头部姿态估计的图嵌入分析

Yun Fu, Thomas S. Huang
{"title":"头部姿态估计的图嵌入分析","authors":"Yun Fu, Thomas S. Huang","doi":"10.1109/FGR.2006.60","DOIUrl":null,"url":null,"abstract":"Head pose is an important vision cue for scene interpretation and human computer interaction. To determine the head pose, one may consider the low-dimensional manifold structure of the face view points in image space. In this paper, we present an appearance-based strategy for head pose estimation using supervised graph embedding (GE) analysis. Thinking globally and fitting locally, we first construct the neighborhood weighted graph in the sense of supervised LLE. The unified projection is calculated in a closed-form solution based on the GE linearization. We then project new data (face view images) into the embedded low-dimensional subspace with the identical projection. The head pose is finally estimated by the K-nearest neighbor classification. We test the proposed method on 18,100 USF face view images. Experimental results show that, even using a very small training set (e.g. 10 subjects), GE achieves higher head pose estimation accuracy with more efficient dimensionality reduction than the existing methods","PeriodicalId":109260,"journal":{"name":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"127","resultStr":"{\"title\":\"Graph embedded analysis for head pose estimation\",\"authors\":\"Yun Fu, Thomas S. Huang\",\"doi\":\"10.1109/FGR.2006.60\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Head pose is an important vision cue for scene interpretation and human computer interaction. To determine the head pose, one may consider the low-dimensional manifold structure of the face view points in image space. In this paper, we present an appearance-based strategy for head pose estimation using supervised graph embedding (GE) analysis. Thinking globally and fitting locally, we first construct the neighborhood weighted graph in the sense of supervised LLE. The unified projection is calculated in a closed-form solution based on the GE linearization. We then project new data (face view images) into the embedded low-dimensional subspace with the identical projection. The head pose is finally estimated by the K-nearest neighbor classification. We test the proposed method on 18,100 USF face view images. Experimental results show that, even using a very small training set (e.g. 10 subjects), GE achieves higher head pose estimation accuracy with more efficient dimensionality reduction than the existing methods\",\"PeriodicalId\":109260,\"journal\":{\"name\":\"7th International Conference on Automatic Face and Gesture Recognition (FGR06)\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"127\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"7th International Conference on Automatic Face and Gesture Recognition (FGR06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FGR.2006.60\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FGR.2006.60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 127

摘要

头部姿态是场景解释和人机交互的重要视觉线索。为了确定头部姿态,可以考虑图像空间中面部视点的低维流形结构。在本文中,我们提出了一种基于外观的头部姿态估计策略,该策略使用监督图嵌入(GE)分析。从全局和局部拟合的角度出发,首先构造有监督LLE意义上的邻域加权图。统一投影的计算是基于GE线性化的封闭解。然后,我们用相同的投影将新数据(面部视图图像)投影到嵌入的低维子空间中。最后通过k近邻分类估计头部姿态。我们对18100张USF人脸图像进行了测试。实验结果表明,即使使用非常小的训练集(例如10个受试者),GE也能比现有方法获得更高的头姿估计精度和更有效的降维
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Graph embedded analysis for head pose estimation
Head pose is an important vision cue for scene interpretation and human computer interaction. To determine the head pose, one may consider the low-dimensional manifold structure of the face view points in image space. In this paper, we present an appearance-based strategy for head pose estimation using supervised graph embedding (GE) analysis. Thinking globally and fitting locally, we first construct the neighborhood weighted graph in the sense of supervised LLE. The unified projection is calculated in a closed-form solution based on the GE linearization. We then project new data (face view images) into the embedded low-dimensional subspace with the identical projection. The head pose is finally estimated by the K-nearest neighbor classification. We test the proposed method on 18,100 USF face view images. Experimental results show that, even using a very small training set (e.g. 10 subjects), GE achieves higher head pose estimation accuracy with more efficient dimensionality reduction than the existing methods
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tracking using dynamic programming for appearance-based sign language recognition Multi-view face recognition by nonlinear dimensionality reduction and generalized linear models Face recognition by projection-based 3D normalization and shading subspace orthogonalization Hierarchical ensemble of Gabor Fisher classifier for face recognition Reliable and fast tracking of faces under varying pose
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1