{"title":"低温cofire陶瓷(LTCC)衬底中的微热管","authors":"W. Jones, Y. Liu, Mingchen Gao","doi":"10.1109/ITHERM.2002.1012462","DOIUrl":null,"url":null,"abstract":"With projected power densities above 100 W/cm/sup 2/ for devices, new methods for thermal management from the heat generation at the die to heat removal to the ambient must be addressed. By integrating micro heat pipes directly within the ceramic substrate, effective thermal conductivity for spreading heat both in both radial and axial directions was achieved. New materials and processes were developed to fabricate the unique components required to handle high thermal loads. Enhanced thermal vias to minimize the thermal impedance through the ceramic in the evaporator and condenser sections were developed, increasing the effective thermal conductivity from 2.63 to near 250 W/m/spl deg/C. The use of an organic insert fabricated into the desired complex shape using rapid prototyping methods, coupled with the viscoelastic flow of the low temperature cofired ceramic (LTCC) during lamination, allowed complex shapes to be developed while ensuring uniform green tape density during lamination prior to tape firing. Large cavities, three dimensional fine structures and porous wicks for capillary 3D flow have, been utilized to fabricate the heat pipes. Heat pipes and spreaders, utilizing water as the working fluid, have been demonstrated operating with power densities in excess of 160 W/cm/sup 2/.","PeriodicalId":299933,"journal":{"name":"ITherm 2002. Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.02CH37258)","volume":"137 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":"{\"title\":\"Micro heat pipes in low temperature cofire ceramic (LTCC) substrates\",\"authors\":\"W. Jones, Y. Liu, Mingchen Gao\",\"doi\":\"10.1109/ITHERM.2002.1012462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With projected power densities above 100 W/cm/sup 2/ for devices, new methods for thermal management from the heat generation at the die to heat removal to the ambient must be addressed. By integrating micro heat pipes directly within the ceramic substrate, effective thermal conductivity for spreading heat both in both radial and axial directions was achieved. New materials and processes were developed to fabricate the unique components required to handle high thermal loads. Enhanced thermal vias to minimize the thermal impedance through the ceramic in the evaporator and condenser sections were developed, increasing the effective thermal conductivity from 2.63 to near 250 W/m/spl deg/C. The use of an organic insert fabricated into the desired complex shape using rapid prototyping methods, coupled with the viscoelastic flow of the low temperature cofired ceramic (LTCC) during lamination, allowed complex shapes to be developed while ensuring uniform green tape density during lamination prior to tape firing. Large cavities, three dimensional fine structures and porous wicks for capillary 3D flow have, been utilized to fabricate the heat pipes. Heat pipes and spreaders, utilizing water as the working fluid, have been demonstrated operating with power densities in excess of 160 W/cm/sup 2/.\",\"PeriodicalId\":299933,\"journal\":{\"name\":\"ITherm 2002. Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.02CH37258)\",\"volume\":\"137 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"59\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ITherm 2002. Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.02CH37258)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITHERM.2002.1012462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ITherm 2002. Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.02CH37258)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITHERM.2002.1012462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

摘要

由于器件的预计功率密度超过100 W/cm/sup 2/,因此必须解决从模具产生热量到将热量排出到环境中的热管理新方法。通过在陶瓷衬底内直接集成微热管,实现了径向和轴向的有效导热。开发了新的材料和工艺来制造处理高热负荷所需的独特组件。在蒸发器和冷凝器部分的陶瓷中开发了增强热通孔,以最小化热阻抗,将有效导热系数从2.63提高到接近250 W/m/spl°/C。使用快速成型方法制作成所需复杂形状的有机插入物,再加上层压过程中低温共烧陶瓷(LTCC)的粘弹性流动,允许开发复杂形状,同时确保在层压过程中均匀的绿色胶带密度。利用大空腔、三维精细结构和用于毛细管三维流动的多孔芯来制造热管。热管和扩散器,利用水作为工作流体,已被证明工作功率密度超过160瓦/厘米/sup 2/。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Micro heat pipes in low temperature cofire ceramic (LTCC) substrates
With projected power densities above 100 W/cm/sup 2/ for devices, new methods for thermal management from the heat generation at the die to heat removal to the ambient must be addressed. By integrating micro heat pipes directly within the ceramic substrate, effective thermal conductivity for spreading heat both in both radial and axial directions was achieved. New materials and processes were developed to fabricate the unique components required to handle high thermal loads. Enhanced thermal vias to minimize the thermal impedance through the ceramic in the evaporator and condenser sections were developed, increasing the effective thermal conductivity from 2.63 to near 250 W/m/spl deg/C. The use of an organic insert fabricated into the desired complex shape using rapid prototyping methods, coupled with the viscoelastic flow of the low temperature cofired ceramic (LTCC) during lamination, allowed complex shapes to be developed while ensuring uniform green tape density during lamination prior to tape firing. Large cavities, three dimensional fine structures and porous wicks for capillary 3D flow have, been utilized to fabricate the heat pipes. Heat pipes and spreaders, utilizing water as the working fluid, have been demonstrated operating with power densities in excess of 160 W/cm/sup 2/.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of lumped R/sub th/C/sub th/ and approximate steady-state methods for reducing transient analysis solution time Multistage thermoelectric micro coolers A new approach to the design of complex heat transfer systems: notebook-size computer design Multimedia thermal CAD system for electronics multilayer structures with compact cold plate Modeling superconformal electrodeposition in trenches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1