基于混合回归卡尔曼滤波方法的NDVI时间序列生成

Mahesh Kumar Pal, P. M. Pradhan
{"title":"基于混合回归卡尔曼滤波方法的NDVI时间序列生成","authors":"Mahesh Kumar Pal, P. M. Pradhan","doi":"10.1109/APSIT58554.2023.10201709","DOIUrl":null,"url":null,"abstract":"The synthetic satellite images can be generated by various methodologies using available Landsat images and the MODIS composite. This paper uses a hybrid methodology combining regression analysis, Kalman filtering, and smoothing. It combines the forward recursion Kalman filter with the backward recursion Kalman filter, which is named a combined mode Kalman filter. This improved hybrid technique provides more accurate synthetic satellite images than those provided by the other blending algorithms like STARFM, ESTARFM, SPSTFM, and KFRFM. Residuals are lower for the combined recursion for the generated synthetic NDVI image generated by the forward or backward recursion filter.","PeriodicalId":170044,"journal":{"name":"2023 International Conference in Advances in Power, Signal, and Information Technology (APSIT)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generation of NDVI Time Series using a Hybrid Regression Kalman Filter based Approach\",\"authors\":\"Mahesh Kumar Pal, P. M. Pradhan\",\"doi\":\"10.1109/APSIT58554.2023.10201709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The synthetic satellite images can be generated by various methodologies using available Landsat images and the MODIS composite. This paper uses a hybrid methodology combining regression analysis, Kalman filtering, and smoothing. It combines the forward recursion Kalman filter with the backward recursion Kalman filter, which is named a combined mode Kalman filter. This improved hybrid technique provides more accurate synthetic satellite images than those provided by the other blending algorithms like STARFM, ESTARFM, SPSTFM, and KFRFM. Residuals are lower for the combined recursion for the generated synthetic NDVI image generated by the forward or backward recursion filter.\",\"PeriodicalId\":170044,\"journal\":{\"name\":\"2023 International Conference in Advances in Power, Signal, and Information Technology (APSIT)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference in Advances in Power, Signal, and Information Technology (APSIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSIT58554.2023.10201709\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference in Advances in Power, Signal, and Information Technology (APSIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIT58554.2023.10201709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

合成卫星图像可以通过利用现有陆地卫星图像和MODIS合成图像的各种方法生成。本文采用了一种结合回归分析、卡尔曼滤波和平滑的混合方法。它将前向递归卡尔曼滤波器与后向递归卡尔曼滤波器相结合,称为组合模式卡尔曼滤波器。与其他混合算法(如STARFM、ESTARFM、SPSTFM和KFRFM)相比,这种改进的混合技术提供了更精确的合成卫星图像。对于前向或后向递归滤波器生成的合成NDVI图像,联合递归的残差较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generation of NDVI Time Series using a Hybrid Regression Kalman Filter based Approach
The synthetic satellite images can be generated by various methodologies using available Landsat images and the MODIS composite. This paper uses a hybrid methodology combining regression analysis, Kalman filtering, and smoothing. It combines the forward recursion Kalman filter with the backward recursion Kalman filter, which is named a combined mode Kalman filter. This improved hybrid technique provides more accurate synthetic satellite images than those provided by the other blending algorithms like STARFM, ESTARFM, SPSTFM, and KFRFM. Residuals are lower for the combined recursion for the generated synthetic NDVI image generated by the forward or backward recursion filter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DGA Based Ensemble Learning Approach for Power Transformer Fault Diagnosis Review of Routing Protocols for Sink with mobility nature in Wireless Sensor Networks Comparative Analysis of Dual-edge Triggered and Sense Amplifier Based Flip-flops in 32 nm CMOS Regime Text Classification of Climate Change Tweets using Artificial Neural Networks, FastText Word Embeddings, and Latent Dirichlet Allocation An Integration of Elephant Herding Optimization and Fruit Fly Optimized Algorithm for Energy Conserving in MANET
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1