用于实时可重构学习网络的数字脉冲神经元细胞

Haipeng Lin, A. Zjajo, R. V. Leuken
{"title":"用于实时可重构学习网络的数字脉冲神经元细胞","authors":"Haipeng Lin, A. Zjajo, R. V. Leuken","doi":"10.1109/SOCC.2017.8226029","DOIUrl":null,"url":null,"abstract":"The high level of realism of spiking neuron networks and their complexity require a substantial computational resources limiting the size of the realized networks. Consequently, the main challenge in building complex and biologically-accurate spiking neuron network is largely set by the high computational and data transfer demands. In this paper, we implement several efficient models of the spiking neurons with characteristics such as axon conduction delays and spike timing-dependent plasticity. Experimental results indicate that the proposed real-time data-flow learning network architecture allows the capacity of over 2800 (depending on the model complexity) biophysically accurate neurons in a single FPGA device.","PeriodicalId":366264,"journal":{"name":"2017 30th IEEE International System-on-Chip Conference (SOCC)","volume":"149 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Digital spiking neuron cells for real-time reconfigurable learning networks\",\"authors\":\"Haipeng Lin, A. Zjajo, R. V. Leuken\",\"doi\":\"10.1109/SOCC.2017.8226029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The high level of realism of spiking neuron networks and their complexity require a substantial computational resources limiting the size of the realized networks. Consequently, the main challenge in building complex and biologically-accurate spiking neuron network is largely set by the high computational and data transfer demands. In this paper, we implement several efficient models of the spiking neurons with characteristics such as axon conduction delays and spike timing-dependent plasticity. Experimental results indicate that the proposed real-time data-flow learning network architecture allows the capacity of over 2800 (depending on the model complexity) biophysically accurate neurons in a single FPGA device.\",\"PeriodicalId\":366264,\"journal\":{\"name\":\"2017 30th IEEE International System-on-Chip Conference (SOCC)\",\"volume\":\"149 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 30th IEEE International System-on-Chip Conference (SOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOCC.2017.8226029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 30th IEEE International System-on-Chip Conference (SOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCC.2017.8226029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尖峰神经元网络的高真实感及其复杂性需要大量的计算资源,限制了所实现网络的大小。因此,构建复杂和生物精确的脉冲神经元网络的主要挑战主要是高计算和数据传输需求。在本文中,我们实现了几种具有轴突传导延迟和脉冲时间依赖可塑性等特征的脉冲神经元的有效模型。实验结果表明,所提出的实时数据流学习网络架构允许在单个FPGA器件中容纳超过2800个(取决于模型复杂度)生物物理精确神经元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Digital spiking neuron cells for real-time reconfigurable learning networks
The high level of realism of spiking neuron networks and their complexity require a substantial computational resources limiting the size of the realized networks. Consequently, the main challenge in building complex and biologically-accurate spiking neuron network is largely set by the high computational and data transfer demands. In this paper, we implement several efficient models of the spiking neurons with characteristics such as axon conduction delays and spike timing-dependent plasticity. Experimental results indicate that the proposed real-time data-flow learning network architecture allows the capacity of over 2800 (depending on the model complexity) biophysically accurate neurons in a single FPGA device.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Content-aware line-based power modeling methodology for image signal processor Power and area evaluation of a fault-tolerant network-on-chip A low-pass continuous-time delta-sigma interface circuit for wideband MEMS gyroscope readout ASIC Lithography hotspot detection: From shallow to deep learning The path to global connectivity — Wireless communication enters the next generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1