基于卷积神经网络的药物不良事件联合提取

Junzhe Zhao, Tianying Zhou, Wenhua Dai
{"title":"基于卷积神经网络的药物不良事件联合提取","authors":"Junzhe Zhao, Tianying Zhou, Wenhua Dai","doi":"10.1109/ICCSE.2018.8468701","DOIUrl":null,"url":null,"abstract":"The conventional joint method for event extraction performs decoding with beam search. Excessively small beam easily leads to the local optimal solution problem., while blind beam expansion may bring too much noise. In this regard., we utilized the convolutional neural network (CNN) to first determine whether the sentences contain events., and then expanded the beam for the event-containing sentences during decoding of the joint event extraction model., which can effectively reduce the noise and improve the search probability of global optimal solution. We applied this model to the extraction of adverse drug events in the medical field and achieved good results.","PeriodicalId":228760,"journal":{"name":"2018 13th International Conference on Computer Science & Education (ICCSE)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Convolutional Neural Network-Based Joint Extraction of Adverse Drug Events\",\"authors\":\"Junzhe Zhao, Tianying Zhou, Wenhua Dai\",\"doi\":\"10.1109/ICCSE.2018.8468701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The conventional joint method for event extraction performs decoding with beam search. Excessively small beam easily leads to the local optimal solution problem., while blind beam expansion may bring too much noise. In this regard., we utilized the convolutional neural network (CNN) to first determine whether the sentences contain events., and then expanded the beam for the event-containing sentences during decoding of the joint event extraction model., which can effectively reduce the noise and improve the search probability of global optimal solution. We applied this model to the extraction of adverse drug events in the medical field and achieved good results.\",\"PeriodicalId\":228760,\"journal\":{\"name\":\"2018 13th International Conference on Computer Science & Education (ICCSE)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 13th International Conference on Computer Science & Education (ICCSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSE.2018.8468701\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 13th International Conference on Computer Science & Education (ICCSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSE.2018.8468701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

传统的联合事件提取方法通过波束搜索进行解码。梁过小容易导致局部最优解问题。,而盲目的光束扩张可能会带来过大的噪声。在这方面。,我们首先使用卷积神经网络(CNN)来确定句子是否包含事件。,然后在联合事件提取模型的解码过程中对包含事件的句子展开波束。,可以有效地降低噪声,提高全局最优解的搜索概率。我们将该模型应用于医学领域药物不良事件的提取,取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Convolutional Neural Network-Based Joint Extraction of Adverse Drug Events
The conventional joint method for event extraction performs decoding with beam search. Excessively small beam easily leads to the local optimal solution problem., while blind beam expansion may bring too much noise. In this regard., we utilized the convolutional neural network (CNN) to first determine whether the sentences contain events., and then expanded the beam for the event-containing sentences during decoding of the joint event extraction model., which can effectively reduce the noise and improve the search probability of global optimal solution. We applied this model to the extraction of adverse drug events in the medical field and achieved good results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Use of Utility Based Interestingness Measures to Predict the Academic Performance of Technology Learners in Sri Lanka Online Virtual Experiment Teaching Platform for Database Technology and Application Experiences in Blended Learning Based on Blackboard in Hubei University of Education Intelligent Information Recommendation Method in Web-Based Argumentation Support System Design and Teaching Practice of Simulation Experiment of “ I ” Shaped Metamaterial *
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1