智能工厂自动转运车辆异常检测

Özlem Örnek, Seval Vatan, S. Sarioglu, A. Yazıcı
{"title":"智能工厂自动转运车辆异常检测","authors":"Özlem Örnek, Seval Vatan, S. Sarioglu, A. Yazıcı","doi":"10.1109/CEIT.2018.8751935","DOIUrl":null,"url":null,"abstract":"Autonomous robots are critical components of factories of futures. In this era, autonomous transfer vehicles are expected to play important role for flexible manufacturing. But the system should detect abnormal events itself. In this study, anomaly detection approach is proposed for autonomous transfer vehicles in the smart factories. Decision trees are used to detect stopping and slow down anomalies in internal transportation of the factories. The proposed approach is tested in simulation environment.","PeriodicalId":357613,"journal":{"name":"2018 6th International Conference on Control Engineering & Information Technology (CEIT)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Anomaly Detection for Autonomous Transfer Vehicles in Smart Factories\",\"authors\":\"Özlem Örnek, Seval Vatan, S. Sarioglu, A. Yazıcı\",\"doi\":\"10.1109/CEIT.2018.8751935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous robots are critical components of factories of futures. In this era, autonomous transfer vehicles are expected to play important role for flexible manufacturing. But the system should detect abnormal events itself. In this study, anomaly detection approach is proposed for autonomous transfer vehicles in the smart factories. Decision trees are used to detect stopping and slow down anomalies in internal transportation of the factories. The proposed approach is tested in simulation environment.\",\"PeriodicalId\":357613,\"journal\":{\"name\":\"2018 6th International Conference on Control Engineering & Information Technology (CEIT)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 6th International Conference on Control Engineering & Information Technology (CEIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEIT.2018.8751935\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 6th International Conference on Control Engineering & Information Technology (CEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEIT.2018.8751935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

自主机器人是未来工厂的关键组成部分。在这个时代,自动驾驶转运车有望在柔性制造中发挥重要作用。但是系统本身应该能够检测到异常事件。本文针对智能工厂中的自动转运车辆,提出了一种异常检测方法。决策树用于检测工厂内部运输中的停车和减速异常。在仿真环境中对该方法进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Anomaly Detection for Autonomous Transfer Vehicles in Smart Factories
Autonomous robots are critical components of factories of futures. In this era, autonomous transfer vehicles are expected to play important role for flexible manufacturing. But the system should detect abnormal events itself. In this study, anomaly detection approach is proposed for autonomous transfer vehicles in the smart factories. Decision trees are used to detect stopping and slow down anomalies in internal transportation of the factories. The proposed approach is tested in simulation environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Approach for Moving Block Signalling System and Safe Distance Calculation Intersection Navigation Under Dynamic Constraints Using Deep Reinforcement Learning Public Health Surveillance System for Online Social Networks using One-Class Text Classification Micro-Flow Sensor Design and Implementation Based on Diamagnetic Levitation Detecting Road Lanes under Extreme Conditions: A Quantitative Performance Evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1