计算机科学图理解与拓扑解析

Shaowei Wang, Lingling Zhang, Xuan Luo, Yi Yang, Xin Hu, Tao Qin, Jun Liu
{"title":"计算机科学图理解与拓扑解析","authors":"Shaowei Wang, Lingling Zhang, Xuan Luo, Yi Yang, Xin Hu, Tao Qin, Jun Liu","doi":"10.1145/3522689","DOIUrl":null,"url":null,"abstract":"Diagram is a special form of visual expression for representing complex concepts, logic, and knowledge, which widely appears in educational scenes such as textbooks, blogs, and encyclopedias. Current research on diagrams preliminarily focuses on natural disciplines such as Biology and Geography, whose expressions are still similar to natural images. In this article, we construct the first novel geometric type of diagrams dataset in Computer Science field, which has more abstract expressions and complex logical relations. The dataset has exhaustive annotations of objects and relations for about 1,300 diagrams and 3,500 question-answer pairs. We introduce the tasks of diagram classification (DC) and diagram question answering (DQA) based on the new dataset, and propose the Diagram Paring Net (DPN) that focuses on analyzing the topological structure and text information of diagrams. We use DPN-based models to solve DC and DQA tasks, and compare the performances to well-known natural images classification models and visual question answering models. Our experiments show the effectiveness of the proposed DPN-based models on diagram understanding tasks, also indicate that our dataset is more complex compared to previous natural image understanding datasets. The presented dataset opens new challenges for research in diagram understanding, and the DPN method provides a novel perspective for studying such data. Our dataset can be available from https://github.com/WayneWong97/CSDia.","PeriodicalId":435653,"journal":{"name":"ACM Transactions on Knowledge Discovery from Data (TKDD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Computer Science Diagram Understanding with Topology Parsing\",\"authors\":\"Shaowei Wang, Lingling Zhang, Xuan Luo, Yi Yang, Xin Hu, Tao Qin, Jun Liu\",\"doi\":\"10.1145/3522689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diagram is a special form of visual expression for representing complex concepts, logic, and knowledge, which widely appears in educational scenes such as textbooks, blogs, and encyclopedias. Current research on diagrams preliminarily focuses on natural disciplines such as Biology and Geography, whose expressions are still similar to natural images. In this article, we construct the first novel geometric type of diagrams dataset in Computer Science field, which has more abstract expressions and complex logical relations. The dataset has exhaustive annotations of objects and relations for about 1,300 diagrams and 3,500 question-answer pairs. We introduce the tasks of diagram classification (DC) and diagram question answering (DQA) based on the new dataset, and propose the Diagram Paring Net (DPN) that focuses on analyzing the topological structure and text information of diagrams. We use DPN-based models to solve DC and DQA tasks, and compare the performances to well-known natural images classification models and visual question answering models. Our experiments show the effectiveness of the proposed DPN-based models on diagram understanding tasks, also indicate that our dataset is more complex compared to previous natural image understanding datasets. The presented dataset opens new challenges for research in diagram understanding, and the DPN method provides a novel perspective for studying such data. Our dataset can be available from https://github.com/WayneWong97/CSDia.\",\"PeriodicalId\":435653,\"journal\":{\"name\":\"ACM Transactions on Knowledge Discovery from Data (TKDD)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Knowledge Discovery from Data (TKDD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3522689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Knowledge Discovery from Data (TKDD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3522689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

图表是表示复杂概念、逻辑和知识的一种特殊的视觉表达形式,广泛出现在教科书、博客和百科全书等教育场景中。目前对图表的研究初步集中在生物学、地理学等自然学科,其表达方式仍与自然图像相似。在本文中,我们构建了计算机科学领域第一个新的几何类型的图表数据集,该数据集具有更抽象的表达和复杂的逻辑关系。该数据集对大约1300个图和3500个问答对的对象和关系进行了详尽的注释。引入了基于新数据集的图分类(DC)和图问答(DQA)任务,提出了以分析图的拓扑结构和文本信息为重点的图配对网(DPN)。我们使用基于dnp的模型来解决DC和DQA任务,并将其性能与已知的自然图像分类模型和视觉问答模型进行比较。我们的实验表明了基于dnp的模型在图理解任务上的有效性,也表明我们的数据集比以前的自然图像理解数据集更复杂。提出的数据集为图表理解的研究带来了新的挑战,DPN方法为研究此类数据提供了新的视角。我们的数据集可以从https://github.com/WayneWong97/CSDia获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computer Science Diagram Understanding with Topology Parsing
Diagram is a special form of visual expression for representing complex concepts, logic, and knowledge, which widely appears in educational scenes such as textbooks, blogs, and encyclopedias. Current research on diagrams preliminarily focuses on natural disciplines such as Biology and Geography, whose expressions are still similar to natural images. In this article, we construct the first novel geometric type of diagrams dataset in Computer Science field, which has more abstract expressions and complex logical relations. The dataset has exhaustive annotations of objects and relations for about 1,300 diagrams and 3,500 question-answer pairs. We introduce the tasks of diagram classification (DC) and diagram question answering (DQA) based on the new dataset, and propose the Diagram Paring Net (DPN) that focuses on analyzing the topological structure and text information of diagrams. We use DPN-based models to solve DC and DQA tasks, and compare the performances to well-known natural images classification models and visual question answering models. Our experiments show the effectiveness of the proposed DPN-based models on diagram understanding tasks, also indicate that our dataset is more complex compared to previous natural image understanding datasets. The presented dataset opens new challenges for research in diagram understanding, and the DPN method provides a novel perspective for studying such data. Our dataset can be available from https://github.com/WayneWong97/CSDia.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine Learning-based Short-term Rainfall Prediction from Sky Data Incremental Feature Spaces Learning with Label Scarcity Multi-objective Learning to Overcome Catastrophic Forgetting in Time-series Applications Combining Filtering and Cross-Correlation Efficiently for Streaming Time Series Segment-Wise Time-Varying Dynamic Bayesian Network with Graph Regularization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1