{"title":"基于动态模糊逻辑系统的自适应粘滑摩擦补偿","authors":"Selvaraj Suraneni, I. Kar, R. Bhatt","doi":"10.1109/TENCON.2003.1273162","DOIUrl":null,"url":null,"abstract":"A dynamic fuzzy logic based adaptive algorithm is proposed for reducing the effect of stick slip friction present in 1-DOF (one degree of freedom) mechanical mass system. The control scheme proposed is an online identification and indirect adaptive control, in which the control input is adjusted adaptively to compensate the effect of nonlinearity. Lyapunov stability analysis is used to ensure the boundedness of tracking errors, identification errors etc. The efficacy of the proposed algorithm is verified on a 1-DOF mechanical mass system with stick slip friction.","PeriodicalId":405847,"journal":{"name":"TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Adaptive stick-slip friction compensation using dynamic fuzzy logic system\",\"authors\":\"Selvaraj Suraneni, I. Kar, R. Bhatt\",\"doi\":\"10.1109/TENCON.2003.1273162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A dynamic fuzzy logic based adaptive algorithm is proposed for reducing the effect of stick slip friction present in 1-DOF (one degree of freedom) mechanical mass system. The control scheme proposed is an online identification and indirect adaptive control, in which the control input is adjusted adaptively to compensate the effect of nonlinearity. Lyapunov stability analysis is used to ensure the boundedness of tracking errors, identification errors etc. The efficacy of the proposed algorithm is verified on a 1-DOF mechanical mass system with stick slip friction.\",\"PeriodicalId\":405847,\"journal\":{\"name\":\"TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCON.2003.1273162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2003.1273162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive stick-slip friction compensation using dynamic fuzzy logic system
A dynamic fuzzy logic based adaptive algorithm is proposed for reducing the effect of stick slip friction present in 1-DOF (one degree of freedom) mechanical mass system. The control scheme proposed is an online identification and indirect adaptive control, in which the control input is adjusted adaptively to compensate the effect of nonlinearity. Lyapunov stability analysis is used to ensure the boundedness of tracking errors, identification errors etc. The efficacy of the proposed algorithm is verified on a 1-DOF mechanical mass system with stick slip friction.