大型消息邻居群的分层和负载感知设计

S. M. Ghazimirsaeed, Qinghua Zhou, Amit Ruhela, Mohammadreza Bayatpour
{"title":"大型消息邻居群的分层和负载感知设计","authors":"S. M. Ghazimirsaeed, Qinghua Zhou, Amit Ruhela, Mohammadreza Bayatpour","doi":"10.1109/SC41405.2020.00038","DOIUrl":null,"url":null,"abstract":"The MPI-3.0 standard introduced neighborhood collective to support sparse communication patterns used in many applications. In this paper, we propose a hierarchical and distributed graph topology that considers the physical topology of the system and the virtual communication pattern of processes to improve the performance of large message neighborhood collectives. Moreover, we propose two design alternatives on top of the hierarchical design: 1. LAG-H: assumes the same communication load for all processes, 2. LAW-H: considers the communication load of processes for fair distribution of load between them. We propose a mathematical model to determine the communication capacity of each process. Then, we use the derived capacity to fairly distribute the load between processes. Our experimental results on up to 28,672 processes show up to 9x speedup for various process topologies. We also observe up to 8.2% performance gain and 34x speedup for NAS-DT and SpMM, respectively.","PeriodicalId":424429,"journal":{"name":"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Hierarchical and Load-Aware Design for Large Message Neighborhood Collectives\",\"authors\":\"S. M. Ghazimirsaeed, Qinghua Zhou, Amit Ruhela, Mohammadreza Bayatpour\",\"doi\":\"10.1109/SC41405.2020.00038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The MPI-3.0 standard introduced neighborhood collective to support sparse communication patterns used in many applications. In this paper, we propose a hierarchical and distributed graph topology that considers the physical topology of the system and the virtual communication pattern of processes to improve the performance of large message neighborhood collectives. Moreover, we propose two design alternatives on top of the hierarchical design: 1. LAG-H: assumes the same communication load for all processes, 2. LAW-H: considers the communication load of processes for fair distribution of load between them. We propose a mathematical model to determine the communication capacity of each process. Then, we use the derived capacity to fairly distribute the load between processes. Our experimental results on up to 28,672 processes show up to 9x speedup for various process topologies. We also observe up to 8.2% performance gain and 34x speedup for NAS-DT and SpMM, respectively.\",\"PeriodicalId\":424429,\"journal\":{\"name\":\"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SC41405.2020.00038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC41405.2020.00038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

MPI-3.0标准引入了邻域集合来支持许多应用程序中使用的稀疏通信模式。在本文中,我们提出了一种考虑系统物理拓扑和进程虚拟通信模式的分层分布式图拓扑,以提高大型消息邻域集体的性能。此外,我们在分层设计的基础上提出了两种设计方案:1。LAG-H:假设所有进程的通信负载相同。LAW-H:考虑进程之间的通信负载,以便在进程之间公平分配负载。我们提出了一个数学模型来确定每个进程的通信容量。然后,我们使用导出的容量在进程之间公平地分配负载。我们在多达28,672个进程上的实验结果显示,对于各种进程拓扑,加速速度可提高9倍。我们还观察到NAS-DT和SpMM的性能分别提高了8.2%和34倍的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Hierarchical and Load-Aware Design for Large Message Neighborhood Collectives
The MPI-3.0 standard introduced neighborhood collective to support sparse communication patterns used in many applications. In this paper, we propose a hierarchical and distributed graph topology that considers the physical topology of the system and the virtual communication pattern of processes to improve the performance of large message neighborhood collectives. Moreover, we propose two design alternatives on top of the hierarchical design: 1. LAG-H: assumes the same communication load for all processes, 2. LAW-H: considers the communication load of processes for fair distribution of load between them. We propose a mathematical model to determine the communication capacity of each process. Then, we use the derived capacity to fairly distribute the load between processes. Our experimental results on up to 28,672 processes show up to 9x speedup for various process topologies. We also observe up to 8.2% performance gain and 34x speedup for NAS-DT and SpMM, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CAB-MPI: Exploring Interprocess Work-Stealing towards Balanced MPI Communication Toward Realization of Numerical Towing-Tank Tests by Wall-Resolved Large Eddy Simulation based on 32 Billion Grid Finite-Element Computation Scalable yet Rigorous Floating-Point Error Analysis Scalable Knowledge Graph Analytics at 136 Petaflop/s BORA: A Bag Optimizer for Robotic Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1