{"title":"成型复合导热系数对成型多芯片模组热性能的影响","authors":"K. Azar, C.D. Mandrone, J.M. Segelken","doi":"10.1109/STHERM.1993.225335","DOIUrl":null,"url":null,"abstract":"Exploratory work has been carried out to investigate filled epoxy systems for thermal management enhancements for plastic encapsulated integrated circuits. A computational study was conducted to examine the effect of molding compound thermal conductivity on thermal resistance of a molded multi-chip module. Seven different molding thermal conductivities were considered. The air velocity was varied from natural convection to high-velocity forced convection. The results showed that an eight-fold increase in molding compound thermal conductivity reduces the junction-to-ambient thermal resistance by 20% in natural convection and by 54% in high-velocity forced convection.<<ETX>>","PeriodicalId":369022,"journal":{"name":"[1993 Proceedings] Ninth Annual IEEE Semiconductor Thermal Measurement and Management Symposium","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Effect of molding compound thermal conductivity on thermal performance of molded multi-chip modules\",\"authors\":\"K. Azar, C.D. Mandrone, J.M. Segelken\",\"doi\":\"10.1109/STHERM.1993.225335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exploratory work has been carried out to investigate filled epoxy systems for thermal management enhancements for plastic encapsulated integrated circuits. A computational study was conducted to examine the effect of molding compound thermal conductivity on thermal resistance of a molded multi-chip module. Seven different molding thermal conductivities were considered. The air velocity was varied from natural convection to high-velocity forced convection. The results showed that an eight-fold increase in molding compound thermal conductivity reduces the junction-to-ambient thermal resistance by 20% in natural convection and by 54% in high-velocity forced convection.<<ETX>>\",\"PeriodicalId\":369022,\"journal\":{\"name\":\"[1993 Proceedings] Ninth Annual IEEE Semiconductor Thermal Measurement and Management Symposium\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1993 Proceedings] Ninth Annual IEEE Semiconductor Thermal Measurement and Management Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/STHERM.1993.225335\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993 Proceedings] Ninth Annual IEEE Semiconductor Thermal Measurement and Management Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STHERM.1993.225335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of molding compound thermal conductivity on thermal performance of molded multi-chip modules
Exploratory work has been carried out to investigate filled epoxy systems for thermal management enhancements for plastic encapsulated integrated circuits. A computational study was conducted to examine the effect of molding compound thermal conductivity on thermal resistance of a molded multi-chip module. Seven different molding thermal conductivities were considered. The air velocity was varied from natural convection to high-velocity forced convection. The results showed that an eight-fold increase in molding compound thermal conductivity reduces the junction-to-ambient thermal resistance by 20% in natural convection and by 54% in high-velocity forced convection.<>