D. Scott, Jide Lu, Haneen Aburub, Aditya Sundararajan, A. Sarwat
{"title":"基于智能的VRLA电池充电状态预测","authors":"D. Scott, Jide Lu, Haneen Aburub, Aditya Sundararajan, A. Sarwat","doi":"10.1109/ITEC-INDIA.2017.8333847","DOIUrl":null,"url":null,"abstract":"A battery management system (BMS) has three main functions, voltage monitoring, current discharge monitoring and remaining life monitoring. This paper primarily focuses on remaining life monitoring through the estimation of battery's state of charge (SOC). An Experimental set-up was prepared to measure the Valve-Regulated Lead-Acid (VRLA) battery's SOC under different operating conditions. Backpropagation (BP) neural network to estimate the battery's SOC using the experimental data. The results showed a satisfactory estimation of battery's SOC with a small (4.25%) root mean square perdition error (RMS).","PeriodicalId":312418,"journal":{"name":"2017 IEEE Transportation Electrification Conference (ITEC-India)","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An intelligence-based state of charge prediction for VRLA batteries\",\"authors\":\"D. Scott, Jide Lu, Haneen Aburub, Aditya Sundararajan, A. Sarwat\",\"doi\":\"10.1109/ITEC-INDIA.2017.8333847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A battery management system (BMS) has three main functions, voltage monitoring, current discharge monitoring and remaining life monitoring. This paper primarily focuses on remaining life monitoring through the estimation of battery's state of charge (SOC). An Experimental set-up was prepared to measure the Valve-Regulated Lead-Acid (VRLA) battery's SOC under different operating conditions. Backpropagation (BP) neural network to estimate the battery's SOC using the experimental data. The results showed a satisfactory estimation of battery's SOC with a small (4.25%) root mean square perdition error (RMS).\",\"PeriodicalId\":312418,\"journal\":{\"name\":\"2017 IEEE Transportation Electrification Conference (ITEC-India)\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Transportation Electrification Conference (ITEC-India)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITEC-INDIA.2017.8333847\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Transportation Electrification Conference (ITEC-India)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITEC-INDIA.2017.8333847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An intelligence-based state of charge prediction for VRLA batteries
A battery management system (BMS) has three main functions, voltage monitoring, current discharge monitoring and remaining life monitoring. This paper primarily focuses on remaining life monitoring through the estimation of battery's state of charge (SOC). An Experimental set-up was prepared to measure the Valve-Regulated Lead-Acid (VRLA) battery's SOC under different operating conditions. Backpropagation (BP) neural network to estimate the battery's SOC using the experimental data. The results showed a satisfactory estimation of battery's SOC with a small (4.25%) root mean square perdition error (RMS).