基于深度神经网络调制分类器的DFT信号检测与信道化

Nathan E. West, Kellen Harwell, B. McCall
{"title":"基于深度神经网络调制分类器的DFT信号检测与信道化","authors":"Nathan E. West, Kellen Harwell, B. McCall","doi":"10.1109/DySPAN.2017.7920745","DOIUrl":null,"url":null,"abstract":"A system capable of detecting and classifying narrowband signals transmitted over the air at radio frequency is described. The system is composed of two parts: (1) a signal detector and channelizer; (2) a radio-frequency modulation classifier. The signal detector uses an FFT for band edge detection. The channelizer uses the estimated bands and FFT vector to create a variable number of resampled time-domain streams (1 for each band detected) that are put in a queue for classification. The classifier is a deep neural network trained to classify the modulations expected. Overall system architecture consisting of a GNU Radio front-end, a message queue, and a Tensorflow-based neural network is explained along with individual algorithms and training of the modulation classifier.","PeriodicalId":221877,"journal":{"name":"2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"DFT signal detection and channelization with a deep neural network modulation classifier\",\"authors\":\"Nathan E. West, Kellen Harwell, B. McCall\",\"doi\":\"10.1109/DySPAN.2017.7920745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A system capable of detecting and classifying narrowband signals transmitted over the air at radio frequency is described. The system is composed of two parts: (1) a signal detector and channelizer; (2) a radio-frequency modulation classifier. The signal detector uses an FFT for band edge detection. The channelizer uses the estimated bands and FFT vector to create a variable number of resampled time-domain streams (1 for each band detected) that are put in a queue for classification. The classifier is a deep neural network trained to classify the modulations expected. Overall system architecture consisting of a GNU Radio front-end, a message queue, and a Tensorflow-based neural network is explained along with individual algorithms and training of the modulation classifier.\",\"PeriodicalId\":221877,\"journal\":{\"name\":\"2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DySPAN.2017.7920745\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DySPAN.2017.7920745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

描述了一种能够检测和分类以无线电频率在空中传输的窄带信号的系统。该系统由两部分组成:(1)信号检测器和信道分配器;(2)射频调制分类器。信号检测器使用FFT进行带边缘检测。信道化器使用估计的频带和FFT矢量来创建可变数量的重采样时域流(每个检测到的频带1个),这些流被放入队列中进行分类。分类器是一个经过训练的深度神经网络,用于对预期的调制进行分类。整个系统架构由GNU Radio前端、消息队列和基于tensorflow的神经网络组成,并解释了单个算法和调制分类器的训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DFT signal detection and channelization with a deep neural network modulation classifier
A system capable of detecting and classifying narrowband signals transmitted over the air at radio frequency is described. The system is composed of two parts: (1) a signal detector and channelizer; (2) a radio-frequency modulation classifier. The signal detector uses an FFT for band edge detection. The channelizer uses the estimated bands and FFT vector to create a variable number of resampled time-domain streams (1 for each band detected) that are put in a queue for classification. The classifier is a deep neural network trained to classify the modulations expected. Overall system architecture consisting of a GNU Radio front-end, a message queue, and a Tensorflow-based neural network is explained along with individual algorithms and training of the modulation classifier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Field trial of the 3.5 GHz citizens broadband radio service governed by a spectrum access system (SAS) Design and implementation of the Secondary User-Enhanced Spectrum Sharing (SUESS) radio Enhanced 5G spectrum sharing using a new adaptive NC-OFDM waveform with reconfigurable antennas USRP N210 demonstration of wideband sensing and blind hierarchical modulation classification Joint transmission and cooperative spectrum sensing scheduling optimization in multi-channel dynamic spectrum access networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1