{"title":"电路伪装集成硬件IP保护","authors":"Ron Cocchi, J. Baukus, Lap-Wai Chow, B. Wang","doi":"10.1145/2593069.2602554","DOIUrl":null,"url":null,"abstract":"Circuit camouflage technologies can be integrated into standard logic cell developments using traditional CAD tools. Camouflaged logic cells are integrated into a typical design flow using standard front end and back end models. Camouflaged logic cells obfuscate a circuit's function by introducing subtle cell design changes at the GDS level. The logic function of a camouflaged logic cell is extremely difficult to determine through silicon imaging analysis preventing netlist extraction, clones and counterfeits. The application of circuit camouflage as part of a customer's design flow can protect hardware IP from reverse engineering. Camouflage fill techniques further inhibit Trojan circuit insertion by completely filling the design with realistic circuitry that does not affect the primary design function. All unused silicon appears to be functional circuitry, so an attacker cannot find space to insert a Trojan circuit. The integration of circuit camouflage techniques is compatible with standard chip design flows and EDA tools, and ICs using such techniques have been successfully employed in high-attack commercial and government segments. Protected under issued and pending patents.","PeriodicalId":433816,"journal":{"name":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"120","resultStr":"{\"title\":\"Circuit camouflage integration for hardware IP protection\",\"authors\":\"Ron Cocchi, J. Baukus, Lap-Wai Chow, B. Wang\",\"doi\":\"10.1145/2593069.2602554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Circuit camouflage technologies can be integrated into standard logic cell developments using traditional CAD tools. Camouflaged logic cells are integrated into a typical design flow using standard front end and back end models. Camouflaged logic cells obfuscate a circuit's function by introducing subtle cell design changes at the GDS level. The logic function of a camouflaged logic cell is extremely difficult to determine through silicon imaging analysis preventing netlist extraction, clones and counterfeits. The application of circuit camouflage as part of a customer's design flow can protect hardware IP from reverse engineering. Camouflage fill techniques further inhibit Trojan circuit insertion by completely filling the design with realistic circuitry that does not affect the primary design function. All unused silicon appears to be functional circuitry, so an attacker cannot find space to insert a Trojan circuit. The integration of circuit camouflage techniques is compatible with standard chip design flows and EDA tools, and ICs using such techniques have been successfully employed in high-attack commercial and government segments. Protected under issued and pending patents.\",\"PeriodicalId\":433816,\"journal\":{\"name\":\"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"120\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2593069.2602554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2593069.2602554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Circuit camouflage integration for hardware IP protection
Circuit camouflage technologies can be integrated into standard logic cell developments using traditional CAD tools. Camouflaged logic cells are integrated into a typical design flow using standard front end and back end models. Camouflaged logic cells obfuscate a circuit's function by introducing subtle cell design changes at the GDS level. The logic function of a camouflaged logic cell is extremely difficult to determine through silicon imaging analysis preventing netlist extraction, clones and counterfeits. The application of circuit camouflage as part of a customer's design flow can protect hardware IP from reverse engineering. Camouflage fill techniques further inhibit Trojan circuit insertion by completely filling the design with realistic circuitry that does not affect the primary design function. All unused silicon appears to be functional circuitry, so an attacker cannot find space to insert a Trojan circuit. The integration of circuit camouflage techniques is compatible with standard chip design flows and EDA tools, and ICs using such techniques have been successfully employed in high-attack commercial and government segments. Protected under issued and pending patents.