平面和浅:通过架构分析理解假图像检测模型

Jing-Fen Xu, Wei Zhang, Yalong Bai, Qibin Sun, Tao Mei
{"title":"平面和浅:通过架构分析理解假图像检测模型","authors":"Jing-Fen Xu, Wei Zhang, Yalong Bai, Qibin Sun, Tao Mei","doi":"10.1145/3469877.3490566","DOIUrl":null,"url":null,"abstract":"Digital image manipulations have been heavily abused to spread misinformation. Despite the great efforts dedicated in research community, prior works are mostly performance-driven, i.e., optimizing performances using standard/heavy networks designed for semantic classification. A thorough understanding for fake images detection models is still missing. This paper studies the essential ingredients for a good fake image detection model, by profiling the best-performing architectures. Specifically, we conduct a thorough analysis on a massive number of detection models, and observe how the performances are affected by different patterns of network structure. Our key findings include: 1) with the same computational budget, flat network structures (e.g., large kernel sizes, wide connections) perform better than commonly used deep networks; 2) operations in shallow layers deserve more computational capacities to trade-off performance and computational cost. These findings sketch a general profile for essential models of fake image detection, which show clear differences with those for semantic classification. Furthermore, based on our analysis, we propose a new Depth-Separable Search Space (DSS) for fake image detection. Compared to state-of-the-art methods, our model achieves competitive performance while saving more than 50% parameters.","PeriodicalId":210974,"journal":{"name":"ACM Multimedia Asia","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flat and Shallow: Understanding Fake Image Detection Models by Architecture Profiling\",\"authors\":\"Jing-Fen Xu, Wei Zhang, Yalong Bai, Qibin Sun, Tao Mei\",\"doi\":\"10.1145/3469877.3490566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital image manipulations have been heavily abused to spread misinformation. Despite the great efforts dedicated in research community, prior works are mostly performance-driven, i.e., optimizing performances using standard/heavy networks designed for semantic classification. A thorough understanding for fake images detection models is still missing. This paper studies the essential ingredients for a good fake image detection model, by profiling the best-performing architectures. Specifically, we conduct a thorough analysis on a massive number of detection models, and observe how the performances are affected by different patterns of network structure. Our key findings include: 1) with the same computational budget, flat network structures (e.g., large kernel sizes, wide connections) perform better than commonly used deep networks; 2) operations in shallow layers deserve more computational capacities to trade-off performance and computational cost. These findings sketch a general profile for essential models of fake image detection, which show clear differences with those for semantic classification. Furthermore, based on our analysis, we propose a new Depth-Separable Search Space (DSS) for fake image detection. Compared to state-of-the-art methods, our model achieves competitive performance while saving more than 50% parameters.\",\"PeriodicalId\":210974,\"journal\":{\"name\":\"ACM Multimedia Asia\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Multimedia Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3469877.3490566\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Multimedia Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3469877.3490566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数字图像处理被严重滥用来传播错误信息。尽管研究界付出了巨大的努力,但之前的工作大多是性能驱动的,即使用为语义分类设计的标准/重型网络来优化性能。对假图像检测模型的深入理解仍然缺失。本文通过分析性能最好的体系结构,研究了一个好的假图像检测模型的基本成分。具体来说,我们对大量的检测模型进行了深入的分析,并观察了不同网络结构模式对性能的影响。我们的主要发现包括:1)在相同的计算预算下,平面网络结构(例如,大内核大小,宽连接)比常用的深度网络性能更好;2)为了权衡性能和计算成本,浅层操作需要更多的计算能力。这些发现勾勒出假图像检测的基本模型的总体概况,并显示出与语义分类的明显差异。在此基础上,我们提出了一种新的深度可分离搜索空间(DSS)用于假图像检测。与最先进的方法相比,我们的模型实现了具有竞争力的性能,同时节省了50%以上的参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flat and Shallow: Understanding Fake Image Detection Models by Architecture Profiling
Digital image manipulations have been heavily abused to spread misinformation. Despite the great efforts dedicated in research community, prior works are mostly performance-driven, i.e., optimizing performances using standard/heavy networks designed for semantic classification. A thorough understanding for fake images detection models is still missing. This paper studies the essential ingredients for a good fake image detection model, by profiling the best-performing architectures. Specifically, we conduct a thorough analysis on a massive number of detection models, and observe how the performances are affected by different patterns of network structure. Our key findings include: 1) with the same computational budget, flat network structures (e.g., large kernel sizes, wide connections) perform better than commonly used deep networks; 2) operations in shallow layers deserve more computational capacities to trade-off performance and computational cost. These findings sketch a general profile for essential models of fake image detection, which show clear differences with those for semantic classification. Furthermore, based on our analysis, we propose a new Depth-Separable Search Space (DSS) for fake image detection. Compared to state-of-the-art methods, our model achieves competitive performance while saving more than 50% parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Scale Graph Convolutional Network and Dynamic Iterative Class Loss for Ship Segmentation in Remote Sensing Images Structural Knowledge Organization and Transfer for Class-Incremental Learning Hard-Boundary Attention Network for Nuclei Instance Segmentation Score Transformer: Generating Musical Score from Note-level Representation CMRD-Net: An Improved Method for Underwater Image Enhancement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1