基于多体素模式分析的fMRI大脑面部表情解码

Farshad Rafiei, G. Hossein-Zadeh
{"title":"基于多体素模式分析的fMRI大脑面部表情解码","authors":"Farshad Rafiei, G. Hossein-Zadeh","doi":"10.1109/KBEI.2015.7436055","DOIUrl":null,"url":null,"abstract":"In a brain decoding study, using the functional magnetic resonance imaging (fMRI) data we determined the facial expression of the visual stimulus that the subject perceived. fMRI data acquired from a healthy right-handed adult volunteer who participated in three separate sessions. Participant viewed blocks of emotionally expressive faces alternating with blocks of neutral faces and scrambled images. Multi-voxel pattern analyses are then used to decode different expressions using the activity pattern of most active parts of brain. We used multi-class support vector machine (SVM) to distinct five brain states corresponding to neutral, happy, sad, angry and surprised. Results show that these facial expressions can be classified from fMRI data with the average sensitivity of 90 percent.","PeriodicalId":168295,"journal":{"name":"2015 2nd International Conference on Knowledge-Based Engineering and Innovation (KBEI)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"fMRI brain decoding of facial expressions based on multi-voxel pattern analysis\",\"authors\":\"Farshad Rafiei, G. Hossein-Zadeh\",\"doi\":\"10.1109/KBEI.2015.7436055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a brain decoding study, using the functional magnetic resonance imaging (fMRI) data we determined the facial expression of the visual stimulus that the subject perceived. fMRI data acquired from a healthy right-handed adult volunteer who participated in three separate sessions. Participant viewed blocks of emotionally expressive faces alternating with blocks of neutral faces and scrambled images. Multi-voxel pattern analyses are then used to decode different expressions using the activity pattern of most active parts of brain. We used multi-class support vector machine (SVM) to distinct five brain states corresponding to neutral, happy, sad, angry and surprised. Results show that these facial expressions can be classified from fMRI data with the average sensitivity of 90 percent.\",\"PeriodicalId\":168295,\"journal\":{\"name\":\"2015 2nd International Conference on Knowledge-Based Engineering and Innovation (KBEI)\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 2nd International Conference on Knowledge-Based Engineering and Innovation (KBEI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KBEI.2015.7436055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 2nd International Conference on Knowledge-Based Engineering and Innovation (KBEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KBEI.2015.7436055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在一项大脑解码研究中,我们利用功能性磁共振成像(fMRI)数据确定了受试者感知到的视觉刺激的面部表情。功能磁共振成像数据来自一个健康的右撇子成年志愿者,他参加了三个独立的会议。参与者观看了表情丰富的面孔与中性面孔和混乱图像的交替。然后使用多体素模式分析,利用大脑最活跃部分的活动模式来解码不同的表情。我们使用多类支持向量机(SVM)来区分大脑的五种状态,分别是中性、快乐、悲伤、愤怒和惊讶。结果表明,这些面部表情可以从fMRI数据中分类,平均灵敏度为90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
fMRI brain decoding of facial expressions based on multi-voxel pattern analysis
In a brain decoding study, using the functional magnetic resonance imaging (fMRI) data we determined the facial expression of the visual stimulus that the subject perceived. fMRI data acquired from a healthy right-handed adult volunteer who participated in three separate sessions. Participant viewed blocks of emotionally expressive faces alternating with blocks of neutral faces and scrambled images. Multi-voxel pattern analyses are then used to decode different expressions using the activity pattern of most active parts of brain. We used multi-class support vector machine (SVM) to distinct five brain states corresponding to neutral, happy, sad, angry and surprised. Results show that these facial expressions can be classified from fMRI data with the average sensitivity of 90 percent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Numerical investigation of water drop movement within a microchannel under electrowetting phenomenon An improvement on LEACH protocol (EZ-LEACH) Transient modeling of transmission lines components with respect to corona phenomenon and grounding system to reduce the transient voltages caused by lightning Impulse A modified digital to digital encoding method to improve the Wireless Body Area Network (WBAN) transmission Synchronization of chaotic Gyroscopes via an adaptive robust controller
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1