Jian Kang , Haiyan Guan , Lingfei Ma , Lanying Wang , Zhengsen Xu , Jonathan Li
{"title":"WaterFormer:一种用于光学遥感图像水体检测的耦合变压器和CNN网络","authors":"Jian Kang , Haiyan Guan , Lingfei Ma , Lanying Wang , Zhengsen Xu , Jonathan Li","doi":"10.1016/j.isprsjprs.2023.11.006","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>As one of the most significant components of the ecosystem, waterbody needs to be highly monitored at different spatial and temporal scales. Nevertheless, waterbody variations in shape, size, and reflectivity, complicated and varied types of land covers, and environmental scene diversity, present colossal challenges in achieving accurate waterbody detection (WD). In this paper, we propose a novel network coupled with the Transformer and convolutional neural network<span><span> (CNN), termed WaterFormer, to automatically, efficiently, and accurately delineate waterbodies from optical high-resolution remotely sensed (HR-RS) images. This network mainly includes a dual-stream CNN, a cross-level Vision Transformer, a light-weight attention module, and a sub-pixel up-sampling module. First, the dual-stream network abstracts waterbody features at multi-views and different levels. Then, to exploit the long-range dependencies between low-level spatial information and high-order </span>semantic features, the cross-level Vision Transformer is embedded into the dual-stream, aiming at improving WD accuracy. Afterwards, the light-weight attention module is adopted to provide semantically strong feature abstractions by enhancing discrimination neurons, and the sub-pixel up-sampling module is employed to further generate high-resolution and high-quality class-specific representations. Quantitative and qualitative evaluations demonstrated that the WaterFormer provided a promising means for detecting waterbody areas in satellite images under complex scene conditions. Moreover, comparative analyses with the state-of-the-art (SOTA) alternatives, e.g., </span></span>MSFENet, MSAFNet, and BiSeNet, also verified the generalization and superiority of the WaterFormer in WD tasks. The assessment results exhibited that the WaterFormer gained an average accuracy of 97.24%, average precision of 94.59%, average recall of 91.95%, average </span><em>F<sub>1</sub></em>-score of 93.24%, and average Kappa index of 0.9133, respectively. Additionally, we presented an open-access HR satellite imagery waterbody dataset, a mesoscale dataset with high-quality and high-precision waterbody annotation to facilitate future research in this field. The dataset has been released at <span>https://github.com/NJdeuK/WD_Dataset</span><svg><path></path></svg>.</p></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"206 ","pages":"Pages 222-241"},"PeriodicalIF":10.6000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"WaterFormer: A coupled transformer and CNN network for waterbody detection in optical remotely-sensed imagery\",\"authors\":\"Jian Kang , Haiyan Guan , Lingfei Ma , Lanying Wang , Zhengsen Xu , Jonathan Li\",\"doi\":\"10.1016/j.isprsjprs.2023.11.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>As one of the most significant components of the ecosystem, waterbody needs to be highly monitored at different spatial and temporal scales. Nevertheless, waterbody variations in shape, size, and reflectivity, complicated and varied types of land covers, and environmental scene diversity, present colossal challenges in achieving accurate waterbody detection (WD). In this paper, we propose a novel network coupled with the Transformer and convolutional neural network<span><span> (CNN), termed WaterFormer, to automatically, efficiently, and accurately delineate waterbodies from optical high-resolution remotely sensed (HR-RS) images. This network mainly includes a dual-stream CNN, a cross-level Vision Transformer, a light-weight attention module, and a sub-pixel up-sampling module. First, the dual-stream network abstracts waterbody features at multi-views and different levels. Then, to exploit the long-range dependencies between low-level spatial information and high-order </span>semantic features, the cross-level Vision Transformer is embedded into the dual-stream, aiming at improving WD accuracy. Afterwards, the light-weight attention module is adopted to provide semantically strong feature abstractions by enhancing discrimination neurons, and the sub-pixel up-sampling module is employed to further generate high-resolution and high-quality class-specific representations. Quantitative and qualitative evaluations demonstrated that the WaterFormer provided a promising means for detecting waterbody areas in satellite images under complex scene conditions. Moreover, comparative analyses with the state-of-the-art (SOTA) alternatives, e.g., </span></span>MSFENet, MSAFNet, and BiSeNet, also verified the generalization and superiority of the WaterFormer in WD tasks. The assessment results exhibited that the WaterFormer gained an average accuracy of 97.24%, average precision of 94.59%, average recall of 91.95%, average </span><em>F<sub>1</sub></em>-score of 93.24%, and average Kappa index of 0.9133, respectively. Additionally, we presented an open-access HR satellite imagery waterbody dataset, a mesoscale dataset with high-quality and high-precision waterbody annotation to facilitate future research in this field. The dataset has been released at <span>https://github.com/NJdeuK/WD_Dataset</span><svg><path></path></svg>.</p></div>\",\"PeriodicalId\":50269,\"journal\":{\"name\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"volume\":\"206 \",\"pages\":\"Pages 222-241\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924271623003118\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271623003118","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
WaterFormer: A coupled transformer and CNN network for waterbody detection in optical remotely-sensed imagery
As one of the most significant components of the ecosystem, waterbody needs to be highly monitored at different spatial and temporal scales. Nevertheless, waterbody variations in shape, size, and reflectivity, complicated and varied types of land covers, and environmental scene diversity, present colossal challenges in achieving accurate waterbody detection (WD). In this paper, we propose a novel network coupled with the Transformer and convolutional neural network (CNN), termed WaterFormer, to automatically, efficiently, and accurately delineate waterbodies from optical high-resolution remotely sensed (HR-RS) images. This network mainly includes a dual-stream CNN, a cross-level Vision Transformer, a light-weight attention module, and a sub-pixel up-sampling module. First, the dual-stream network abstracts waterbody features at multi-views and different levels. Then, to exploit the long-range dependencies between low-level spatial information and high-order semantic features, the cross-level Vision Transformer is embedded into the dual-stream, aiming at improving WD accuracy. Afterwards, the light-weight attention module is adopted to provide semantically strong feature abstractions by enhancing discrimination neurons, and the sub-pixel up-sampling module is employed to further generate high-resolution and high-quality class-specific representations. Quantitative and qualitative evaluations demonstrated that the WaterFormer provided a promising means for detecting waterbody areas in satellite images under complex scene conditions. Moreover, comparative analyses with the state-of-the-art (SOTA) alternatives, e.g., MSFENet, MSAFNet, and BiSeNet, also verified the generalization and superiority of the WaterFormer in WD tasks. The assessment results exhibited that the WaterFormer gained an average accuracy of 97.24%, average precision of 94.59%, average recall of 91.95%, average F1-score of 93.24%, and average Kappa index of 0.9133, respectively. Additionally, we presented an open-access HR satellite imagery waterbody dataset, a mesoscale dataset with high-quality and high-precision waterbody annotation to facilitate future research in this field. The dataset has been released at https://github.com/NJdeuK/WD_Dataset.
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.