增强的解毒方法处理橄榄厂废水在灌溉安全回用

IF 6 3区 环境科学与生态学 Q1 Environmental Science Environmental Sciences Europe Pub Date : 2023-11-08 DOI:10.1186/s12302-023-00797-2
Raid Alrowais, Rania Saber Yousef, Osama konsowa Ahmed, Mohamed Mahmoud-Aly, Mahmoud M. Abdel daiem, Noha Said
{"title":"增强的解毒方法处理橄榄厂废水在灌溉安全回用","authors":"Raid Alrowais,&nbsp;Rania Saber Yousef,&nbsp;Osama konsowa Ahmed,&nbsp;Mohamed Mahmoud-Aly,&nbsp;Mahmoud M. Abdel daiem,&nbsp;Noha Said","doi":"10.1186/s12302-023-00797-2","DOIUrl":null,"url":null,"abstract":"<div><p>Olive Mill Wastewater (OMWW) is produced in large quantities and contains high levels of nutrients that can be reused for irrigation, reducing the demand for freshwater resources. However, OMWW is phytotoxic and expensive to treat, making it important to develop more cost-effective treatment methods. This study aims to investigate an integrated detoxification treatment sequence consisting of acid precipitation, Fenton oxidation, and electrical coagulation to safely reuse OMWW for barley germination. Raw, treated and diluted OMWW (25% and 50% OMWW) were tested. The results showed that raw and diluted OMWW suppressed seed germination at all concentrations, while diluted treated OMWW enhanced seed germination and plant growth. In addition, treated OMWW (acid precipitation treatment) at 25% dilution reported 0% phytotoxicity significantly improved plant growth, where plant fresh weight (FW) reached 123.33 mg. Moreover, α-amylase, lipase, and protease enzyme activity confirmed the superior enhancement of barley growth parameters, where the highest enzyme activity value recoded 0.870 mg maltose/g FW. The integrated treatments reduced detoxification by 97.90% for total phenolic, 98.37% for total flavonoids, and 99.18% for total tannins. Reductions of around 95.78%, 60.00%, and 78.90% in total organic carbon, electric conductivity, and total solids, respectively, were achieved. A significant decrease in heavy metals was observed with removal ratios 98.64%, 94.80%, 96.88%, and 95.72% for Fe, Cu, Mn, and Zn, respectively. Seedling Vigor Index as an indicator of crop productivity was successfully predicted using neural network modeling. Therefore, the applied method can be used as a fertilizer to support plant growth and reduce fertilization costs.</p></div>","PeriodicalId":54293,"journal":{"name":"Environmental Sciences Europe","volume":"35 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://enveurope.springeropen.com/counter/pdf/10.1186/s12302-023-00797-2","citationCount":"0","resultStr":"{\"title\":\"Enhanced detoxification methods for the safe reuse of treated olive mill wastewater in irrigation\",\"authors\":\"Raid Alrowais,&nbsp;Rania Saber Yousef,&nbsp;Osama konsowa Ahmed,&nbsp;Mohamed Mahmoud-Aly,&nbsp;Mahmoud M. Abdel daiem,&nbsp;Noha Said\",\"doi\":\"10.1186/s12302-023-00797-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Olive Mill Wastewater (OMWW) is produced in large quantities and contains high levels of nutrients that can be reused for irrigation, reducing the demand for freshwater resources. However, OMWW is phytotoxic and expensive to treat, making it important to develop more cost-effective treatment methods. This study aims to investigate an integrated detoxification treatment sequence consisting of acid precipitation, Fenton oxidation, and electrical coagulation to safely reuse OMWW for barley germination. Raw, treated and diluted OMWW (25% and 50% OMWW) were tested. The results showed that raw and diluted OMWW suppressed seed germination at all concentrations, while diluted treated OMWW enhanced seed germination and plant growth. In addition, treated OMWW (acid precipitation treatment) at 25% dilution reported 0% phytotoxicity significantly improved plant growth, where plant fresh weight (FW) reached 123.33 mg. Moreover, α-amylase, lipase, and protease enzyme activity confirmed the superior enhancement of barley growth parameters, where the highest enzyme activity value recoded 0.870 mg maltose/g FW. The integrated treatments reduced detoxification by 97.90% for total phenolic, 98.37% for total flavonoids, and 99.18% for total tannins. Reductions of around 95.78%, 60.00%, and 78.90% in total organic carbon, electric conductivity, and total solids, respectively, were achieved. A significant decrease in heavy metals was observed with removal ratios 98.64%, 94.80%, 96.88%, and 95.72% for Fe, Cu, Mn, and Zn, respectively. Seedling Vigor Index as an indicator of crop productivity was successfully predicted using neural network modeling. Therefore, the applied method can be used as a fertilizer to support plant growth and reduce fertilization costs.</p></div>\",\"PeriodicalId\":54293,\"journal\":{\"name\":\"Environmental Sciences Europe\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://enveurope.springeropen.com/counter/pdf/10.1186/s12302-023-00797-2\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Sciences Europe\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s12302-023-00797-2\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Sciences Europe","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1186/s12302-023-00797-2","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

摘要

橄榄厂废水(OMWW)大量产生,含有高水平的营养物质,可重复用于灌溉,减少了对淡水资源的需求。然而,OMWW具有植物毒性且治疗费用昂贵,因此开发更具成本效益的治疗方法非常重要。本研究旨在探索由酸沉淀、Fenton氧化和电絮凝组成的综合脱毒处理序列,以安全地重复利用OMWW用于大麦发芽。测试生水、处理水和稀释水(25%和50%)。结果表明:不同浓度的OMWW对种子萌发均有抑制作用,而稀释后的OMWW对种子萌发和植株生长均有促进作用。此外,25%稀释的酸沉淀处理(OMWW)的植物毒性为0%,显著改善了植株生长,植株鲜重(FW)达到123.33 mg。此外,α-淀粉酶、脂肪酶和蛋白酶活性也证实了大麦生长参数的显著提高,其中酶活性最高值为0.870 mg麦芽糖/g FW。综合处理对总酚、总黄酮和总单宁的脱毒能力分别降低了97.90%、98.37%和99.18%。总有机碳、电导率和总固体含量分别降低了95.78%、60.00%和78.90%左右。对Fe、Cu、Mn和Zn的去除率分别为98.64%、94.80%、96.88%和95.72%,重金属的去除率显著降低。利用神经网络模型成功地预测了幼苗活力指数作为作物生产力的指标。因此,所施用的方法可以作为一种肥料来支持植物生长,降低施肥成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced detoxification methods for the safe reuse of treated olive mill wastewater in irrigation

Olive Mill Wastewater (OMWW) is produced in large quantities and contains high levels of nutrients that can be reused for irrigation, reducing the demand for freshwater resources. However, OMWW is phytotoxic and expensive to treat, making it important to develop more cost-effective treatment methods. This study aims to investigate an integrated detoxification treatment sequence consisting of acid precipitation, Fenton oxidation, and electrical coagulation to safely reuse OMWW for barley germination. Raw, treated and diluted OMWW (25% and 50% OMWW) were tested. The results showed that raw and diluted OMWW suppressed seed germination at all concentrations, while diluted treated OMWW enhanced seed germination and plant growth. In addition, treated OMWW (acid precipitation treatment) at 25% dilution reported 0% phytotoxicity significantly improved plant growth, where plant fresh weight (FW) reached 123.33 mg. Moreover, α-amylase, lipase, and protease enzyme activity confirmed the superior enhancement of barley growth parameters, where the highest enzyme activity value recoded 0.870 mg maltose/g FW. The integrated treatments reduced detoxification by 97.90% for total phenolic, 98.37% for total flavonoids, and 99.18% for total tannins. Reductions of around 95.78%, 60.00%, and 78.90% in total organic carbon, electric conductivity, and total solids, respectively, were achieved. A significant decrease in heavy metals was observed with removal ratios 98.64%, 94.80%, 96.88%, and 95.72% for Fe, Cu, Mn, and Zn, respectively. Seedling Vigor Index as an indicator of crop productivity was successfully predicted using neural network modeling. Therefore, the applied method can be used as a fertilizer to support plant growth and reduce fertilization costs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Sciences Europe
Environmental Sciences Europe Environmental Science-Pollution
CiteScore
9.20
自引率
1.70%
发文量
110
审稿时长
13 weeks
期刊介绍: ESEU is an international journal, focusing primarily on Europe, with a broad scope covering all aspects of environmental sciences, including the main topic regulation. ESEU will discuss the entanglement between environmental sciences and regulation because, in recent years, there have been misunderstandings and even disagreement between stakeholders in these two areas. ESEU will help to improve the comprehension of issues between environmental sciences and regulation. ESEU will be an outlet from the German-speaking (DACH) countries to Europe and an inlet from Europe to the DACH countries regarding environmental sciences and regulation. Moreover, ESEU will facilitate the exchange of ideas and interaction between Europe and the DACH countries regarding environmental regulatory issues. Although Europe is at the center of ESEU, the journal will not exclude the rest of the world, because regulatory issues pertaining to environmental sciences can be fully seen only from a global perspective.
期刊最新文献
Towards the global plastic treaty: a clue to the complexity of plastics in practice Chronic toxicity testing including transcriptomics-based molecular profiling in Cloeon dipterum Environmental impact of quarrying on air quality in Ebonyi state, Nigeria How does high-speed railway affect green technology innovation? A perspective of high-quality human capital Management of links of interest in European Union expertise authorities dealing with plant protection products: comparative analysis and recommendations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1