基于数据驱动的自编码器技术的聚合物挤出模具设计

IF 2.6 3区 材料科学 Q2 ENGINEERING, MANUFACTURING International Journal of Material Forming Pub Date : 2023-11-14 DOI:10.1007/s12289-023-01796-7
Chady Ghnatios, Eloi Gravot, Victor Champaney, Nicolas Verdon, Nicolas Hascoët, Francisco Chinesta
{"title":"基于数据驱动的自编码器技术的聚合物挤出模具设计","authors":"Chady Ghnatios,&nbsp;Eloi Gravot,&nbsp;Victor Champaney,&nbsp;Nicolas Verdon,&nbsp;Nicolas Hascoët,&nbsp;Francisco Chinesta","doi":"10.1007/s12289-023-01796-7","DOIUrl":null,"url":null,"abstract":"<div><p>Designing extrusion dies remains a tricky issue when considering polymers. In fact, polymers exhibit strong non-Newtonian rheology that manifest in noticeable viscoelastic behaviors as well as significant normal stress differences. As a consequence, when they are pushed through a die, an important die-swelling is observed, and consequently the final geometry of the extruded profile differs significantly from the one of the die. This behavior turns the die’s design into a difficult task, and its geometry must be defined in such a way that the extruded profile results in the targeted one. Numerical simulation was identified as a natural way for building and solving the inverse problem of defining the die, leading to the targeted extruded geometry. However, state-of-the-art rheological models reveal inaccuracies for the desired level of precision. In this paper, we propose a data-driven approach that, based on the accumulated experience on the extruded profiles for different dies, learns the relation enabling efficient die design.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"17 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polymer extrusion die design using a data-driven autoencoders technique\",\"authors\":\"Chady Ghnatios,&nbsp;Eloi Gravot,&nbsp;Victor Champaney,&nbsp;Nicolas Verdon,&nbsp;Nicolas Hascoët,&nbsp;Francisco Chinesta\",\"doi\":\"10.1007/s12289-023-01796-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Designing extrusion dies remains a tricky issue when considering polymers. In fact, polymers exhibit strong non-Newtonian rheology that manifest in noticeable viscoelastic behaviors as well as significant normal stress differences. As a consequence, when they are pushed through a die, an important die-swelling is observed, and consequently the final geometry of the extruded profile differs significantly from the one of the die. This behavior turns the die’s design into a difficult task, and its geometry must be defined in such a way that the extruded profile results in the targeted one. Numerical simulation was identified as a natural way for building and solving the inverse problem of defining the die, leading to the targeted extruded geometry. However, state-of-the-art rheological models reveal inaccuracies for the desired level of precision. In this paper, we propose a data-driven approach that, based on the accumulated experience on the extruded profiles for different dies, learns the relation enabling efficient die design.</p></div>\",\"PeriodicalId\":591,\"journal\":{\"name\":\"International Journal of Material Forming\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Material Forming\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12289-023-01796-7\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-023-01796-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

当考虑聚合物时,设计挤出模具仍然是一个棘手的问题。事实上,聚合物表现出强烈的非牛顿流变性,表现为明显的粘弹性行为以及显著的正应力差异。因此,当它们被推过模具时,观察到一个重要的模具膨胀,因此挤压轮廓的最终几何形状与模具中的一个显着不同。这种行为将模具的设计变成一项艰巨的任务,其几何形状必须以这样一种方式定义,即挤压的轮廓结果在目标之一。数值模拟被认为是建立和解决定义模具逆问题的自然方法,从而导致目标挤压几何形状。然而,最先进的流变模型揭示了精度所需水平的不准确性。在本文中,我们提出了一种数据驱动的方法,该方法基于在不同模具的挤压型材上积累的经验,学习实现高效模具设计的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Polymer extrusion die design using a data-driven autoencoders technique

Designing extrusion dies remains a tricky issue when considering polymers. In fact, polymers exhibit strong non-Newtonian rheology that manifest in noticeable viscoelastic behaviors as well as significant normal stress differences. As a consequence, when they are pushed through a die, an important die-swelling is observed, and consequently the final geometry of the extruded profile differs significantly from the one of the die. This behavior turns the die’s design into a difficult task, and its geometry must be defined in such a way that the extruded profile results in the targeted one. Numerical simulation was identified as a natural way for building and solving the inverse problem of defining the die, leading to the targeted extruded geometry. However, state-of-the-art rheological models reveal inaccuracies for the desired level of precision. In this paper, we propose a data-driven approach that, based on the accumulated experience on the extruded profiles for different dies, learns the relation enabling efficient die design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Material Forming
International Journal of Material Forming ENGINEERING, MANUFACTURING-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.10
自引率
4.20%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material. The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations. All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.
期刊最新文献
The evolution of thermal cycle, microstructures and mechanical properties of 6061 – T6 aluminum alloy thick plate Bobbin tool friction stir welded Generalisation of the hydrodynamics model method for hot and cold strip rolling application UNIMAT: An enhanced forming simulation model of prepreg woven fabrics, with application to process optimization for wrinkle mitigation Optimisation of interlayer temperature in wire-arc additive manufacturing process using NURBS-based metamodel Accurate real-time modeling for multiple-blow forging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1