{"title":"先进锂离子电池负极用氮掺杂碳涂层SnO2纳米管","authors":"Junhai Wang, Jiandong Zheng, Liping Gao, Chunyu Meng, Jiarui Huang, Sang Woo Joo","doi":"10.1007/s11706-023-0663-7","DOIUrl":null,"url":null,"abstract":"<div><p>Tin dioxide nanotubes with N-doped carbon layer (SnO<sub>2</sub>/N-C NTs) were synthesized through a MoO<sub>3</sub> nanorod-based sacrificial template method, dopamine polymerization and calcination process. Applied to the Li-ion battery, SnO<sub>2</sub>/N-C NTs exhibited excellent electrochemical properties, with a first discharge capacity of 1722.3 mAh·g<sup>−1</sup> at 0.1 A·g<sup>−1</sup> and a high capacity of 1369.3 mAh·g<sup>−1</sup> over 100 cycles. The superior electrochemical performance is ascribed to the N-doped carbon layer and tubular structure, which effectively improves the electrical conductivity of the composites, accelerates the migration of Li<sup>+</sup> and electrons, and alleviates the volume change of the anode to a certain extent.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"17 4","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SnO2 nanotubes with N-doped carbon coating for advanced Li-ion battery anodes\",\"authors\":\"Junhai Wang, Jiandong Zheng, Liping Gao, Chunyu Meng, Jiarui Huang, Sang Woo Joo\",\"doi\":\"10.1007/s11706-023-0663-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tin dioxide nanotubes with N-doped carbon layer (SnO<sub>2</sub>/N-C NTs) were synthesized through a MoO<sub>3</sub> nanorod-based sacrificial template method, dopamine polymerization and calcination process. Applied to the Li-ion battery, SnO<sub>2</sub>/N-C NTs exhibited excellent electrochemical properties, with a first discharge capacity of 1722.3 mAh·g<sup>−1</sup> at 0.1 A·g<sup>−1</sup> and a high capacity of 1369.3 mAh·g<sup>−1</sup> over 100 cycles. The superior electrochemical performance is ascribed to the N-doped carbon layer and tubular structure, which effectively improves the electrical conductivity of the composites, accelerates the migration of Li<sup>+</sup> and electrons, and alleviates the volume change of the anode to a certain extent.</p></div>\",\"PeriodicalId\":572,\"journal\":{\"name\":\"Frontiers of Materials Science\",\"volume\":\"17 4\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11706-023-0663-7\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11706-023-0663-7","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
SnO2 nanotubes with N-doped carbon coating for advanced Li-ion battery anodes
Tin dioxide nanotubes with N-doped carbon layer (SnO2/N-C NTs) were synthesized through a MoO3 nanorod-based sacrificial template method, dopamine polymerization and calcination process. Applied to the Li-ion battery, SnO2/N-C NTs exhibited excellent electrochemical properties, with a first discharge capacity of 1722.3 mAh·g−1 at 0.1 A·g−1 and a high capacity of 1369.3 mAh·g−1 over 100 cycles. The superior electrochemical performance is ascribed to the N-doped carbon layer and tubular structure, which effectively improves the electrical conductivity of the composites, accelerates the migration of Li+ and electrons, and alleviates the volume change of the anode to a certain extent.
期刊介绍:
Frontiers of Materials Science is a peer-reviewed international journal that publishes high quality reviews/mini-reviews, full-length research papers, and short Communications recording the latest pioneering studies on all aspects of materials science. It aims at providing a forum to promote communication and exchange between scientists in the worldwide materials science community.
The subjects are seen from international and interdisciplinary perspectives covering areas including (but not limited to):
Biomaterials including biomimetics and biomineralization;
Nano materials;
Polymers and composites;
New metallic materials;
Advanced ceramics;
Materials modeling and computation;
Frontier materials synthesis and characterization;
Novel methods for materials manufacturing;
Materials performance;
Materials applications in energy, information and biotechnology.