泻泻叶提取物制备的ZnO纳米修饰玻碳电极对抗逆转录病毒药物的电化学活性研究

IF 4.7 Q2 NANOSCIENCE & NANOTECHNOLOGY Micro and Nano Systems Letters Pub Date : 2022-05-17 DOI:10.1186/s40486-022-00147-6
Harits Atika Ariyanta, Fakhrur Roji, Dewangga Oky Bagus Apriandanu
{"title":"泻泻叶提取物制备的ZnO纳米修饰玻碳电极对抗逆转录病毒药物的电化学活性研究","authors":"Harits Atika Ariyanta,&nbsp;Fakhrur Roji,&nbsp;Dewangga Oky Bagus Apriandanu","doi":"10.1186/s40486-022-00147-6","DOIUrl":null,"url":null,"abstract":"<div><p>The phytosynthesis method was used to prepare ZnO nanoparticles (ZnO NPs) via <i>Senna alata L.</i> leaf extract (SALE) by involving alkaloids, which play an essential role as a source of weak bases during the formation reaction of NPs. ZnO NPs on glassy carbon electrodes (GCE/ZnO NP) have been introduced to investigate its electrochemical activity towards the antiretroviral drug, lamivudine (3TC). Several characterization techniques, such as Fourier Transform Infra-Red (FTIR), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS), and Dynamic Light Scattering (DLS) techniques were employed to analyze the properties of GCE/ZnO NPs. As a result, ZnO NPs in spherical shape showed a high purity crystalline hexagonal wurtzite structure with a particle diameter of 40–60 nm. A Cyclic Voltammetry (CV) measurement confirmed that the electrochemical reduction of 3TC on GCE/ZnO NPs exhibited an excellent linear range of 10–300 µM with a detection limit of 1.902 µM, quantitation limit of 6.330 µM, and sensitivity of 0.0278 µA/µM. Thus, this research suggests a facile method for the preparation of material-based ZnO NPs as a promising antiretroviral drug sensors due to their excellent electrochemical properties.</p></div>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":"10 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-022-00147-6","citationCount":"4","resultStr":"{\"title\":\"Electrochemical activity of glassy carbon electrode modified with ZnO nanoparticles prepared Via Senna Alata L. leaf extract towards antiretroviral drug\",\"authors\":\"Harits Atika Ariyanta,&nbsp;Fakhrur Roji,&nbsp;Dewangga Oky Bagus Apriandanu\",\"doi\":\"10.1186/s40486-022-00147-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The phytosynthesis method was used to prepare ZnO nanoparticles (ZnO NPs) via <i>Senna alata L.</i> leaf extract (SALE) by involving alkaloids, which play an essential role as a source of weak bases during the formation reaction of NPs. ZnO NPs on glassy carbon electrodes (GCE/ZnO NP) have been introduced to investigate its electrochemical activity towards the antiretroviral drug, lamivudine (3TC). Several characterization techniques, such as Fourier Transform Infra-Red (FTIR), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS), and Dynamic Light Scattering (DLS) techniques were employed to analyze the properties of GCE/ZnO NPs. As a result, ZnO NPs in spherical shape showed a high purity crystalline hexagonal wurtzite structure with a particle diameter of 40–60 nm. A Cyclic Voltammetry (CV) measurement confirmed that the electrochemical reduction of 3TC on GCE/ZnO NPs exhibited an excellent linear range of 10–300 µM with a detection limit of 1.902 µM, quantitation limit of 6.330 µM, and sensitivity of 0.0278 µA/µM. Thus, this research suggests a facile method for the preparation of material-based ZnO NPs as a promising antiretroviral drug sensors due to their excellent electrochemical properties.</p></div>\",\"PeriodicalId\":704,\"journal\":{\"name\":\"Micro and Nano Systems Letters\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2022-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-022-00147-6\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nano Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40486-022-00147-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nano Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40486-022-00147-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 4

摘要

采用植物合成的方法,以泻泻叶提取物(SALE)为原料制备ZnO纳米颗粒(ZnO NPs),其中生物碱在纳米颗粒形成反应中起着弱碱的重要作用。介绍了玻璃碳电极上ZnO纳米粒子(GCE/ZnO NP)对抗逆转录病毒药物拉米夫定(3TC)的电化学活性。采用傅里叶变换红外(FTIR)、x射线衍射(XRD)、扫描电子显微镜(SEM)、能量色散x射线能谱(EDS)和动态光散射(DLS)等表征技术分析了GCE/ZnO纳米粒子的性能。结果表明,球形ZnO纳米粒子具有高纯度的六方纤锌矿结构,粒径为40 ~ 60 nm。循环伏安法(CV)测试证实,3TC在GCE/ZnO纳米粒子上的电化学还原具有良好的线性范围(10 ~ 300µM),检测限为1.902µM,定量限为6.330µM,灵敏度为0.0278µA/µM。因此,本研究提出了一种制备基于材料的ZnO NPs的简便方法,由于其优异的电化学性能,ZnO NPs有望成为抗逆转录病毒药物传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electrochemical activity of glassy carbon electrode modified with ZnO nanoparticles prepared Via Senna Alata L. leaf extract towards antiretroviral drug

The phytosynthesis method was used to prepare ZnO nanoparticles (ZnO NPs) via Senna alata L. leaf extract (SALE) by involving alkaloids, which play an essential role as a source of weak bases during the formation reaction of NPs. ZnO NPs on glassy carbon electrodes (GCE/ZnO NP) have been introduced to investigate its electrochemical activity towards the antiretroviral drug, lamivudine (3TC). Several characterization techniques, such as Fourier Transform Infra-Red (FTIR), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS), and Dynamic Light Scattering (DLS) techniques were employed to analyze the properties of GCE/ZnO NPs. As a result, ZnO NPs in spherical shape showed a high purity crystalline hexagonal wurtzite structure with a particle diameter of 40–60 nm. A Cyclic Voltammetry (CV) measurement confirmed that the electrochemical reduction of 3TC on GCE/ZnO NPs exhibited an excellent linear range of 10–300 µM with a detection limit of 1.902 µM, quantitation limit of 6.330 µM, and sensitivity of 0.0278 µA/µM. Thus, this research suggests a facile method for the preparation of material-based ZnO NPs as a promising antiretroviral drug sensors due to their excellent electrochemical properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Micro and Nano Systems Letters
Micro and Nano Systems Letters Engineering-Biomedical Engineering
CiteScore
10.60
自引率
5.60%
发文量
16
审稿时长
13 weeks
期刊最新文献
Influence of implantation of O2+ ions on the composition and electronic structure of the W(111) surface ZnO-adipic acid composites as phase change material for latent heat thermal energy storage systems Behavior of 1-octanol and biphasic 1-octanol/water droplets in a digital microfluidic system Investigating non fluorescence nanoparticle transport in Matrigel-filled microfluidic devices using synchrotron X-ray scattering Flexible sensing probe for the simultaneous monitoring of neurotransmitters imbalance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1