基于图像和表格数据的包含类分类的比较

S. R. Babu, R. Musi, S. K. Michelic
{"title":"基于图像和表格数据的包含类分类的比较","authors":"S. R. Babu, R. Musi, S. K. Michelic","doi":"10.1515/pm-2023-0056","DOIUrl":null,"url":null,"abstract":"Abstract Non-metallic inclusions (NMI) have a significant impact on the final properties of steel products. As of today, the scanning electron microscope equipped with energy-dispersive spectroscopy (SEM-EDS) serves as the state of art characterization tool to study NMIs in steel. The automated 2D analysis method with the SEM-EDS allows for a comprehensive analysis of all the inclusions observed within a selected area of the sample. The drawback of this method is the time taken to complete the analysis. Therefore, machine learning methods have been introduced which can potentially replace the usage of EDS for obtaining chemical information of the inclusion by making quick categorizations of the inclusion classes and types. The machine learning methods can be developed by either training it directly with labeled backscattered electron (BSE) images or by tabular data consisting of image features input such as morphology and mean gray value obtained from the BSE images. The current paper compares both these methods using two steel grades. The advantages and the disadvantages have been documented. The paper will also compare the usage of shallow and deep learning methods to classify the steels and discuss the outlook of the existing machine learning methods to efficiently categorize the NMIs in steel.","PeriodicalId":20360,"journal":{"name":"Practical Metallography","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison between image based and tabular data-based inclusion class categorization\",\"authors\":\"S. R. Babu, R. Musi, S. K. Michelic\",\"doi\":\"10.1515/pm-2023-0056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Non-metallic inclusions (NMI) have a significant impact on the final properties of steel products. As of today, the scanning electron microscope equipped with energy-dispersive spectroscopy (SEM-EDS) serves as the state of art characterization tool to study NMIs in steel. The automated 2D analysis method with the SEM-EDS allows for a comprehensive analysis of all the inclusions observed within a selected area of the sample. The drawback of this method is the time taken to complete the analysis. Therefore, machine learning methods have been introduced which can potentially replace the usage of EDS for obtaining chemical information of the inclusion by making quick categorizations of the inclusion classes and types. The machine learning methods can be developed by either training it directly with labeled backscattered electron (BSE) images or by tabular data consisting of image features input such as morphology and mean gray value obtained from the BSE images. The current paper compares both these methods using two steel grades. The advantages and the disadvantages have been documented. The paper will also compare the usage of shallow and deep learning methods to classify the steels and discuss the outlook of the existing machine learning methods to efficiently categorize the NMIs in steel.\",\"PeriodicalId\":20360,\"journal\":{\"name\":\"Practical Metallography\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Practical Metallography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/pm-2023-0056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Practical Metallography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/pm-2023-0056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要非金属夹杂物(NMI)对钢制品的最终性能有重要影响。到目前为止,配备能量色散光谱(SEM-EDS)的扫描电子显微镜是研究钢中nmi的最先进的表征工具。使用SEM-EDS的自动二维分析方法可以对样品选定区域内观察到的所有夹杂物进行全面分析。这种方法的缺点是需要花费时间来完成分析。因此,机器学习方法已经被引入,它可以通过对包含类和类型进行快速分类来潜在地取代使用EDS来获取包含的化学信息。机器学习方法可以通过直接使用标记背散射电子(BSE)图像进行训练,也可以通过从BSE图像中获得的形态学和平均灰度值等图像特征输入组成的表格数据进行训练。本文用两种钢种对这两种方法进行了比较。其优点和缺点已被记录。本文还将比较浅学习和深度学习方法对钢的分类,并讨论现有机器学习方法对钢中nmi进行有效分类的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison between image based and tabular data-based inclusion class categorization
Abstract Non-metallic inclusions (NMI) have a significant impact on the final properties of steel products. As of today, the scanning electron microscope equipped with energy-dispersive spectroscopy (SEM-EDS) serves as the state of art characterization tool to study NMIs in steel. The automated 2D analysis method with the SEM-EDS allows for a comprehensive analysis of all the inclusions observed within a selected area of the sample. The drawback of this method is the time taken to complete the analysis. Therefore, machine learning methods have been introduced which can potentially replace the usage of EDS for obtaining chemical information of the inclusion by making quick categorizations of the inclusion classes and types. The machine learning methods can be developed by either training it directly with labeled backscattered electron (BSE) images or by tabular data consisting of image features input such as morphology and mean gray value obtained from the BSE images. The current paper compares both these methods using two steel grades. The advantages and the disadvantages have been documented. The paper will also compare the usage of shallow and deep learning methods to classify the steels and discuss the outlook of the existing machine learning methods to efficiently categorize the NMIs in steel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced susceptibility of high-strength fastener nuts to hydrogen-induced stress corrosion cracking Influence of tool geometry on mechanical and microstructural characteristics of friction stir welded cast alloys Gruson’s Fahrpanzer – Historical insights thanks to non-destructive materials science Inhalt Examination of archaeological bronze parts using micro-computed tomography and metallography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1