{"title":"基于云计算改进分布式深度神经网络的新方法","authors":"Muhtada Zuhair Ali, Karrar Shakir Muttair","doi":"10.3991/ijim.v17i17.38023","DOIUrl":null,"url":null,"abstract":"In recent years, deep distributed neural networks (DDNNs) and neural networks (NN) have excelled in an extensive list of applications. For example, deep convolutional neural networks (DCNNs) are constantly gaining new features in various tasks in computer vision. At the same time, the number of end devices, including Internet of Things (IoT) devices has increased prominently. These devices are attractive targets for machine learning applications because they are often directly connected to sensors. For example (cameras, microphones, and gyroscopes) that record large amounts of input data in a stream mode. This study presents the design of a DDNN with end devices, edges, and clouds that spans computer hierarchies. The idea presented is considered one of the new ideas because it depends on two layers to distinguish, namely the convolutional layer and the pooling layer. The main objective behind using these two layers in one proposal is to provide and obtain the best results. Finally, we discovered that the proposed technique produced the best results in terms of accuracy and cost, with the precision of the definition reaching 99 % and the cost being quite affordable at 25. As a result, we conclude that these results are far superior to those achieved by the researchers in their ideas provided in previous recent literature.","PeriodicalId":53486,"journal":{"name":"International Journal of Interactive Mobile Technologies","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Approach to Improving Distributed Deep Neural Networks over Cloud Computing\",\"authors\":\"Muhtada Zuhair Ali, Karrar Shakir Muttair\",\"doi\":\"10.3991/ijim.v17i17.38023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, deep distributed neural networks (DDNNs) and neural networks (NN) have excelled in an extensive list of applications. For example, deep convolutional neural networks (DCNNs) are constantly gaining new features in various tasks in computer vision. At the same time, the number of end devices, including Internet of Things (IoT) devices has increased prominently. These devices are attractive targets for machine learning applications because they are often directly connected to sensors. For example (cameras, microphones, and gyroscopes) that record large amounts of input data in a stream mode. This study presents the design of a DDNN with end devices, edges, and clouds that spans computer hierarchies. The idea presented is considered one of the new ideas because it depends on two layers to distinguish, namely the convolutional layer and the pooling layer. The main objective behind using these two layers in one proposal is to provide and obtain the best results. Finally, we discovered that the proposed technique produced the best results in terms of accuracy and cost, with the precision of the definition reaching 99 % and the cost being quite affordable at 25. As a result, we conclude that these results are far superior to those achieved by the researchers in their ideas provided in previous recent literature.\",\"PeriodicalId\":53486,\"journal\":{\"name\":\"International Journal of Interactive Mobile Technologies\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Interactive Mobile Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3991/ijim.v17i17.38023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Interactive Mobile Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3991/ijim.v17i17.38023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
A Novel Approach to Improving Distributed Deep Neural Networks over Cloud Computing
In recent years, deep distributed neural networks (DDNNs) and neural networks (NN) have excelled in an extensive list of applications. For example, deep convolutional neural networks (DCNNs) are constantly gaining new features in various tasks in computer vision. At the same time, the number of end devices, including Internet of Things (IoT) devices has increased prominently. These devices are attractive targets for machine learning applications because they are often directly connected to sensors. For example (cameras, microphones, and gyroscopes) that record large amounts of input data in a stream mode. This study presents the design of a DDNN with end devices, edges, and clouds that spans computer hierarchies. The idea presented is considered one of the new ideas because it depends on two layers to distinguish, namely the convolutional layer and the pooling layer. The main objective behind using these two layers in one proposal is to provide and obtain the best results. Finally, we discovered that the proposed technique produced the best results in terms of accuracy and cost, with the precision of the definition reaching 99 % and the cost being quite affordable at 25. As a result, we conclude that these results are far superior to those achieved by the researchers in their ideas provided in previous recent literature.
期刊介绍:
This interdisciplinary journal focuses on the exchange of relevant trends and research results and presents practical experiences gained while developing and testing elements of interactive mobile technologies. It bridges the gap between pure academic research journals and more practical publications. So it covers the full range from research, application development to experience reports and product descriptions. Fields of interest include, but are not limited to: -Future trends in m-technologies- Architectures and infrastructures for ubiquitous mobile systems- Services for mobile networks- Industrial Applications- Mobile Computing- Adaptive and Adaptable environments using mobile devices- Mobile Web and video Conferencing- M-learning applications- M-learning standards- Life-long m-learning- Mobile technology support for educator and student- Remote and virtual laboratories- Mobile measurement technologies- Multimedia and virtual environments- Wireless and Ad-hoc Networks- Smart Agent Technologies- Social Impact of Current and Next-generation Mobile Technologies- Facilitation of Mobile Learning- Cost-effectiveness- Real world experiences- Pilot projects, products and applications