Hualu Zhou , Bingjing Zheng , David Julian McClements
{"title":"利用 pH 值驱动法强化含有多种多酚的纳米乳液","authors":"Hualu Zhou , Bingjing Zheng , David Julian McClements","doi":"10.26599/FSHW.2022.9250161","DOIUrl":null,"url":null,"abstract":"<div><p>Simple but effective methods are required to incorporate multiple bioactive polyphenols into delivery systems to increase their dispersibility, stability and bioavailability. We developed and tested three pH-driven protocols for creating nanoemulsions loaded with multiple lipophilic polyphenols. These protocols differed in how the different polyphenols were incorporated into the nanoemulsions. The impact of these three methods on the formation, properties, and gastrointestinal fate of nanoemulsions loaded with curcumin, resveratrol, and quercetin was investigated. The three methods produced nanoemulsions with similar initial particle properties: droplet diameters (0.15, 0.16, and 0.15 μm) and zeta-potentials (–59, –58, and –58 mV), respectively. However, the average encapsulation efficiencies (82 %, 88 %, and 61 %), gastrointestinal stabilities (83 %, 97 %, and 29 %) and bioaccessibilities (77 %, 90 %, and 73 %) for curcumin, resveratrol, and quercetin were somewhat different. In particular, more quercetin degradation occurred using the approach that held it under alkaline conditions for extended periods. In general, the pH-driven method provides researchers with a versatile approach of incorporating multiple polyphenols with different characteristics into functional food and beverages using a simple and inexpensive method.</p></div>","PeriodicalId":12406,"journal":{"name":"Food Science and Human Wellness","volume":"13 4","pages":"Pages 1943-1950"},"PeriodicalIF":5.6000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S221345302400168X/pdfft?md5=c711d3783c4dd7d2ddd1001d77f4b2cb&pid=1-s2.0-S221345302400168X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Utilization of pH-driven methods to fortify nanoemulsions with multiple polyphenols\",\"authors\":\"Hualu Zhou , Bingjing Zheng , David Julian McClements\",\"doi\":\"10.26599/FSHW.2022.9250161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Simple but effective methods are required to incorporate multiple bioactive polyphenols into delivery systems to increase their dispersibility, stability and bioavailability. We developed and tested three pH-driven protocols for creating nanoemulsions loaded with multiple lipophilic polyphenols. These protocols differed in how the different polyphenols were incorporated into the nanoemulsions. The impact of these three methods on the formation, properties, and gastrointestinal fate of nanoemulsions loaded with curcumin, resveratrol, and quercetin was investigated. The three methods produced nanoemulsions with similar initial particle properties: droplet diameters (0.15, 0.16, and 0.15 μm) and zeta-potentials (–59, –58, and –58 mV), respectively. However, the average encapsulation efficiencies (82 %, 88 %, and 61 %), gastrointestinal stabilities (83 %, 97 %, and 29 %) and bioaccessibilities (77 %, 90 %, and 73 %) for curcumin, resveratrol, and quercetin were somewhat different. In particular, more quercetin degradation occurred using the approach that held it under alkaline conditions for extended periods. In general, the pH-driven method provides researchers with a versatile approach of incorporating multiple polyphenols with different characteristics into functional food and beverages using a simple and inexpensive method.</p></div>\",\"PeriodicalId\":12406,\"journal\":{\"name\":\"Food Science and Human Wellness\",\"volume\":\"13 4\",\"pages\":\"Pages 1943-1950\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S221345302400168X/pdfft?md5=c711d3783c4dd7d2ddd1001d77f4b2cb&pid=1-s2.0-S221345302400168X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Science and Human Wellness\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221345302400168X\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science and Human Wellness","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221345302400168X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Utilization of pH-driven methods to fortify nanoemulsions with multiple polyphenols
Simple but effective methods are required to incorporate multiple bioactive polyphenols into delivery systems to increase their dispersibility, stability and bioavailability. We developed and tested three pH-driven protocols for creating nanoemulsions loaded with multiple lipophilic polyphenols. These protocols differed in how the different polyphenols were incorporated into the nanoemulsions. The impact of these three methods on the formation, properties, and gastrointestinal fate of nanoemulsions loaded with curcumin, resveratrol, and quercetin was investigated. The three methods produced nanoemulsions with similar initial particle properties: droplet diameters (0.15, 0.16, and 0.15 μm) and zeta-potentials (–59, –58, and –58 mV), respectively. However, the average encapsulation efficiencies (82 %, 88 %, and 61 %), gastrointestinal stabilities (83 %, 97 %, and 29 %) and bioaccessibilities (77 %, 90 %, and 73 %) for curcumin, resveratrol, and quercetin were somewhat different. In particular, more quercetin degradation occurred using the approach that held it under alkaline conditions for extended periods. In general, the pH-driven method provides researchers with a versatile approach of incorporating multiple polyphenols with different characteristics into functional food and beverages using a simple and inexpensive method.
期刊介绍:
Food Science and Human Wellness is an international peer-reviewed journal that provides a forum for the dissemination of the latest scientific results in food science, nutriology, immunology and cross-field research. Articles must present information that is novel, has high impact and interest, and is of high scientific quality. By their effort, it has been developed to promote the public awareness on diet, advocate healthy diet, reduce the harm caused by unreasonable dietary habit, and directs healthy food development for food industrial producers.