Silvio Carta, Tommaso Turchi, Luigi Pintacuda, Ljubomir Jankovic
{"title":"RECOMM。衡量弹性社区:一种分析和预测工具","authors":"Silvio Carta, Tommaso Turchi, Luigi Pintacuda, Ljubomir Jankovic","doi":"10.1177/14780771231174891","DOIUrl":null,"url":null,"abstract":"We present initial findings of our project RECOMM: an analytical tool that evaluates the resilience of urban areas. The tool utilises Deep Neural Networks to identify characteristics of resilience and assigns a resilience score to different urban areas based on the proximity to certain features such as green spaces, buildings, natural elements and infrastructure. The tool also identifies which urban morphological factors have the greatest impact on resilience. The method uses Convolutional Neural Networks with the Keras library on Tensorflow for calculations and the results are displayed in an online demo built with Node.js and React.js. This work contributes to the analysis and design of sustainable cities and communities by offering a tool to assess resilience through urban form.","PeriodicalId":45139,"journal":{"name":"International Journal of Architectural Computing","volume":"17 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RECOMM. Measuring resilient communities: An analytical and predictive tool\",\"authors\":\"Silvio Carta, Tommaso Turchi, Luigi Pintacuda, Ljubomir Jankovic\",\"doi\":\"10.1177/14780771231174891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present initial findings of our project RECOMM: an analytical tool that evaluates the resilience of urban areas. The tool utilises Deep Neural Networks to identify characteristics of resilience and assigns a resilience score to different urban areas based on the proximity to certain features such as green spaces, buildings, natural elements and infrastructure. The tool also identifies which urban morphological factors have the greatest impact on resilience. The method uses Convolutional Neural Networks with the Keras library on Tensorflow for calculations and the results are displayed in an online demo built with Node.js and React.js. This work contributes to the analysis and design of sustainable cities and communities by offering a tool to assess resilience through urban form.\",\"PeriodicalId\":45139,\"journal\":{\"name\":\"International Journal of Architectural Computing\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Architectural Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/14780771231174891\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Architectural Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/14780771231174891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHITECTURE","Score":null,"Total":0}
RECOMM. Measuring resilient communities: An analytical and predictive tool
We present initial findings of our project RECOMM: an analytical tool that evaluates the resilience of urban areas. The tool utilises Deep Neural Networks to identify characteristics of resilience and assigns a resilience score to different urban areas based on the proximity to certain features such as green spaces, buildings, natural elements and infrastructure. The tool also identifies which urban morphological factors have the greatest impact on resilience. The method uses Convolutional Neural Networks with the Keras library on Tensorflow for calculations and the results are displayed in an online demo built with Node.js and React.js. This work contributes to the analysis and design of sustainable cities and communities by offering a tool to assess resilience through urban form.