{"title":"基于MEMS传感器的多旋翼无人机结构损伤检测机器学习方法","authors":"Yumeng Ma, Faizal Mustapha, Mohamad Ridzwan Ishak, Sharafiz Abdul Rahim, Mazli Mustapha","doi":"10.1177/1475472x231206495","DOIUrl":null,"url":null,"abstract":"Multi-rotor Unmanned Aerial Vehicles (UAVs) have become increasingly important in industries and early detection of structural damage is crucial to prevent unexpected breakdowns, ensure production efficiency, and maintain operational safety. This paper proposes machine learning techniques for detecting damage caused by loosened screws which is not easy founded based on vibration signals. An independent data acquisition device with a Micro Electro Mechanical Systems (MEMS) sensor is designed and fixed onto the multi-rotor UAVs to acquire the vibration data. Four machine learning algorithms, namely Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Decision Tree, and Random Forest, are employed for damage detection. The results demonstrate successful utilization of the vibration data from the MEMS sensor for damage detection, with the random forest model outperforming other models with an accuracy of 90.07.","PeriodicalId":49304,"journal":{"name":"International Journal of Aeroacoustics","volume":"301 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning methods for multi-rotor UAV structural damage detection based on MEMS sensor\",\"authors\":\"Yumeng Ma, Faizal Mustapha, Mohamad Ridzwan Ishak, Sharafiz Abdul Rahim, Mazli Mustapha\",\"doi\":\"10.1177/1475472x231206495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-rotor Unmanned Aerial Vehicles (UAVs) have become increasingly important in industries and early detection of structural damage is crucial to prevent unexpected breakdowns, ensure production efficiency, and maintain operational safety. This paper proposes machine learning techniques for detecting damage caused by loosened screws which is not easy founded based on vibration signals. An independent data acquisition device with a Micro Electro Mechanical Systems (MEMS) sensor is designed and fixed onto the multi-rotor UAVs to acquire the vibration data. Four machine learning algorithms, namely Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Decision Tree, and Random Forest, are employed for damage detection. The results demonstrate successful utilization of the vibration data from the MEMS sensor for damage detection, with the random forest model outperforming other models with an accuracy of 90.07.\",\"PeriodicalId\":49304,\"journal\":{\"name\":\"International Journal of Aeroacoustics\",\"volume\":\"301 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Aeroacoustics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/1475472x231206495\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aeroacoustics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1475472x231206495","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
Machine learning methods for multi-rotor UAV structural damage detection based on MEMS sensor
Multi-rotor Unmanned Aerial Vehicles (UAVs) have become increasingly important in industries and early detection of structural damage is crucial to prevent unexpected breakdowns, ensure production efficiency, and maintain operational safety. This paper proposes machine learning techniques for detecting damage caused by loosened screws which is not easy founded based on vibration signals. An independent data acquisition device with a Micro Electro Mechanical Systems (MEMS) sensor is designed and fixed onto the multi-rotor UAVs to acquire the vibration data. Four machine learning algorithms, namely Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Decision Tree, and Random Forest, are employed for damage detection. The results demonstrate successful utilization of the vibration data from the MEMS sensor for damage detection, with the random forest model outperforming other models with an accuracy of 90.07.
期刊介绍:
International Journal of Aeroacoustics is a peer-reviewed journal publishing developments in all areas of fundamental and applied aeroacoustics. Fundamental topics include advances in understanding aeroacoustics phenomena; applied topics include all aspects of civil and military aircraft, automobile and high speed train aeroacoustics, and the impact of acoustics on structures. As well as original contributions, state of the art reviews and surveys will be published.
Subtopics include, among others, jet mixing noise; screech tones; broadband shock associated noise and methods for suppression; the near-ground acoustic environment of Short Take-Off and Vertical Landing (STOVL) aircraft; weapons bay aeroacoustics, cavity acoustics, closed-loop feedback control of aeroacoustic phenomena; computational aeroacoustics including high fidelity numerical simulations, and analytical acoustics.