基于MEMS传感器的多旋翼无人机结构损伤检测机器学习方法

IF 1.2 4区 工程技术 Q3 ACOUSTICS International Journal of Aeroacoustics Pub Date : 2023-10-05 DOI:10.1177/1475472x231206495
Yumeng Ma, Faizal Mustapha, Mohamad Ridzwan Ishak, Sharafiz Abdul Rahim, Mazli Mustapha
{"title":"基于MEMS传感器的多旋翼无人机结构损伤检测机器学习方法","authors":"Yumeng Ma, Faizal Mustapha, Mohamad Ridzwan Ishak, Sharafiz Abdul Rahim, Mazli Mustapha","doi":"10.1177/1475472x231206495","DOIUrl":null,"url":null,"abstract":"Multi-rotor Unmanned Aerial Vehicles (UAVs) have become increasingly important in industries and early detection of structural damage is crucial to prevent unexpected breakdowns, ensure production efficiency, and maintain operational safety. This paper proposes machine learning techniques for detecting damage caused by loosened screws which is not easy founded based on vibration signals. An independent data acquisition device with a Micro Electro Mechanical Systems (MEMS) sensor is designed and fixed onto the multi-rotor UAVs to acquire the vibration data. Four machine learning algorithms, namely Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Decision Tree, and Random Forest, are employed for damage detection. The results demonstrate successful utilization of the vibration data from the MEMS sensor for damage detection, with the random forest model outperforming other models with an accuracy of 90.07.","PeriodicalId":49304,"journal":{"name":"International Journal of Aeroacoustics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning methods for multi-rotor UAV structural damage detection based on MEMS sensor\",\"authors\":\"Yumeng Ma, Faizal Mustapha, Mohamad Ridzwan Ishak, Sharafiz Abdul Rahim, Mazli Mustapha\",\"doi\":\"10.1177/1475472x231206495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-rotor Unmanned Aerial Vehicles (UAVs) have become increasingly important in industries and early detection of structural damage is crucial to prevent unexpected breakdowns, ensure production efficiency, and maintain operational safety. This paper proposes machine learning techniques for detecting damage caused by loosened screws which is not easy founded based on vibration signals. An independent data acquisition device with a Micro Electro Mechanical Systems (MEMS) sensor is designed and fixed onto the multi-rotor UAVs to acquire the vibration data. Four machine learning algorithms, namely Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Decision Tree, and Random Forest, are employed for damage detection. The results demonstrate successful utilization of the vibration data from the MEMS sensor for damage detection, with the random forest model outperforming other models with an accuracy of 90.07.\",\"PeriodicalId\":49304,\"journal\":{\"name\":\"International Journal of Aeroacoustics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Aeroacoustics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/1475472x231206495\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aeroacoustics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1475472x231206495","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

多旋翼无人机(uav)在工业中变得越来越重要,早期发现结构损坏对于防止意外故障、确保生产效率和维护运行安全至关重要。本文提出了一种基于振动信号不易建立的螺钉松动损伤检测的机器学习技术。设计了一种带有微机电系统(MEMS)传感器的独立数据采集装置,并将其固定在多旋翼无人机上进行振动数据采集。采用支持向量机(SVM)、k近邻(KNN)、决策树(Decision Tree)和随机森林(Random Forest)四种机器学习算法进行损伤检测。结果表明,该方法成功地利用了MEMS传感器的振动数据进行损伤检测,随机森林模型的检测精度达到90.07,优于其他模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine learning methods for multi-rotor UAV structural damage detection based on MEMS sensor
Multi-rotor Unmanned Aerial Vehicles (UAVs) have become increasingly important in industries and early detection of structural damage is crucial to prevent unexpected breakdowns, ensure production efficiency, and maintain operational safety. This paper proposes machine learning techniques for detecting damage caused by loosened screws which is not easy founded based on vibration signals. An independent data acquisition device with a Micro Electro Mechanical Systems (MEMS) sensor is designed and fixed onto the multi-rotor UAVs to acquire the vibration data. Four machine learning algorithms, namely Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Decision Tree, and Random Forest, are employed for damage detection. The results demonstrate successful utilization of the vibration data from the MEMS sensor for damage detection, with the random forest model outperforming other models with an accuracy of 90.07.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Aeroacoustics
International Journal of Aeroacoustics ACOUSTICS-ENGINEERING, AEROSPACE
CiteScore
2.10
自引率
10.00%
发文量
38
审稿时长
>12 weeks
期刊介绍: International Journal of Aeroacoustics is a peer-reviewed journal publishing developments in all areas of fundamental and applied aeroacoustics. Fundamental topics include advances in understanding aeroacoustics phenomena; applied topics include all aspects of civil and military aircraft, automobile and high speed train aeroacoustics, and the impact of acoustics on structures. As well as original contributions, state of the art reviews and surveys will be published. Subtopics include, among others, jet mixing noise; screech tones; broadband shock associated noise and methods for suppression; the near-ground acoustic environment of Short Take-Off and Vertical Landing (STOVL) aircraft; weapons bay aeroacoustics, cavity acoustics, closed-loop feedback control of aeroacoustic phenomena; computational aeroacoustics including high fidelity numerical simulations, and analytical acoustics.
期刊最新文献
Precise acoustic drone localization and tracking via drone noise: Steered response power - phase transform around harmonics Aerodynamic and aeroacoustic characteristics of rocket sled under strong ground effect Prediction of the aerodynamic noise of an airfoil via the hybrid methods of aeroacoustics Aeroacoustic source localization using the microphone array method with application to wind turbine noise Christopher Tam: Brief history and accomplishments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1