共同设计:探索虚拟环境中多目标设计问题的协同动力学

IF 2.9 3区 工程技术 Q2 ENGINEERING, MECHANICAL Journal of Mechanical Design Pub Date : 2023-10-05 DOI:10.1115/1.4063658
Debrina Roy, Nicole Calpin, Kathy Cheng, Alison Olechowski, Andrea Arguelles, Nicolás F. Soria Zurita, Jessica Menold
{"title":"共同设计:探索虚拟环境中多目标设计问题的协同动力学","authors":"Debrina Roy, Nicole Calpin, Kathy Cheng, Alison Olechowski, Andrea Arguelles, Nicolás F. Soria Zurita, Jessica Menold","doi":"10.1115/1.4063658","DOIUrl":null,"url":null,"abstract":"Abstract The pace of technological advancements has been rapidly increasing in recent years, with the advent of artificial intelligence, virtual/augmented reality, and other emerging technologies fundamentally changing the way human beings work. The adoption and integration of these advanced technologies necessitates teams with diverse disciplinary expertise, to help teams remain agile to an ever-evolving technological landscape. Significant disciplinary diversity amongst teams however can be detrimental to team communication and performance. Additionally, accelerated by the COVID-19 Pandemic, the adoption and use of technologies that enable design teams to collaborate across significant geographical distances has become the norm in today's work environments, further complicating communication, and performance issues. Little is known about the way in which technology mediated communication affects the collaborative processes of design. As a first step towards filling this gap, the current work explores the fundamental ways experts from distinct disciplinary backgrounds collaborate in virtual design environments. Specifically, we explore the conversational dynamics between experts from two distinct fields: Non-Destructive Evaluation (NDE) and Design for Additive Manufacturing (DfAM). Using Markov Modeling, the study identified distinct communicative patterns that emerged during collaborative design efforts. Our findings suggest that traditional assumptions regarding communication patterns and design outcomes may not be applicable to expert design teams working in virtual environments.","PeriodicalId":50137,"journal":{"name":"Journal of Mechanical Design","volume":"10 1","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing Together: Exploring Collaborative Dynamics of Multi-Objective Design Problems in Virtual Environments\",\"authors\":\"Debrina Roy, Nicole Calpin, Kathy Cheng, Alison Olechowski, Andrea Arguelles, Nicolás F. Soria Zurita, Jessica Menold\",\"doi\":\"10.1115/1.4063658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The pace of technological advancements has been rapidly increasing in recent years, with the advent of artificial intelligence, virtual/augmented reality, and other emerging technologies fundamentally changing the way human beings work. The adoption and integration of these advanced technologies necessitates teams with diverse disciplinary expertise, to help teams remain agile to an ever-evolving technological landscape. Significant disciplinary diversity amongst teams however can be detrimental to team communication and performance. Additionally, accelerated by the COVID-19 Pandemic, the adoption and use of technologies that enable design teams to collaborate across significant geographical distances has become the norm in today's work environments, further complicating communication, and performance issues. Little is known about the way in which technology mediated communication affects the collaborative processes of design. As a first step towards filling this gap, the current work explores the fundamental ways experts from distinct disciplinary backgrounds collaborate in virtual design environments. Specifically, we explore the conversational dynamics between experts from two distinct fields: Non-Destructive Evaluation (NDE) and Design for Additive Manufacturing (DfAM). Using Markov Modeling, the study identified distinct communicative patterns that emerged during collaborative design efforts. Our findings suggest that traditional assumptions regarding communication patterns and design outcomes may not be applicable to expert design teams working in virtual environments.\",\"PeriodicalId\":50137,\"journal\":{\"name\":\"Journal of Mechanical Design\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanical Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063658\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063658","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

近年来,随着人工智能、虚拟/增强现实和其他新兴技术的出现,技术进步的步伐迅速加快,从根本上改变了人类的工作方式。这些先进技术的采用和集成需要具有不同专业知识的团队,以帮助团队在不断发展的技术环境中保持敏捷。然而,团队之间明显的学科多样性可能不利于团队沟通和绩效。此外,在COVID-19大流行的加速下,采用和使用使设计团队能够跨越重大地理距离进行协作的技术已成为当今工作环境中的常态,这使沟通和性能问题进一步复杂化。人们对以技术为媒介的沟通影响设计协作过程的方式知之甚少。作为填补这一空白的第一步,目前的工作探索了来自不同学科背景的专家在虚拟设计环境中合作的基本方式。具体来说,我们探讨了来自两个不同领域的专家之间的对话动态:无损评估(NDE)和增材制造设计(DfAM)。利用马尔可夫模型,该研究确定了协作设计过程中出现的不同交流模式。我们的研究结果表明,关于沟通模式和设计结果的传统假设可能不适用于在虚拟环境中工作的专家设计团队。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Designing Together: Exploring Collaborative Dynamics of Multi-Objective Design Problems in Virtual Environments
Abstract The pace of technological advancements has been rapidly increasing in recent years, with the advent of artificial intelligence, virtual/augmented reality, and other emerging technologies fundamentally changing the way human beings work. The adoption and integration of these advanced technologies necessitates teams with diverse disciplinary expertise, to help teams remain agile to an ever-evolving technological landscape. Significant disciplinary diversity amongst teams however can be detrimental to team communication and performance. Additionally, accelerated by the COVID-19 Pandemic, the adoption and use of technologies that enable design teams to collaborate across significant geographical distances has become the norm in today's work environments, further complicating communication, and performance issues. Little is known about the way in which technology mediated communication affects the collaborative processes of design. As a first step towards filling this gap, the current work explores the fundamental ways experts from distinct disciplinary backgrounds collaborate in virtual design environments. Specifically, we explore the conversational dynamics between experts from two distinct fields: Non-Destructive Evaluation (NDE) and Design for Additive Manufacturing (DfAM). Using Markov Modeling, the study identified distinct communicative patterns that emerged during collaborative design efforts. Our findings suggest that traditional assumptions regarding communication patterns and design outcomes may not be applicable to expert design teams working in virtual environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mechanical Design
Journal of Mechanical Design 工程技术-工程:机械
CiteScore
8.00
自引率
18.20%
发文量
139
审稿时长
3.9 months
期刊介绍: The Journal of Mechanical Design (JMD) serves the broad design community as the venue for scholarly, archival research in all aspects of the design activity with emphasis on design synthesis. JMD has traditionally served the ASME Design Engineering Division and its technical committees, but it welcomes contributions from all areas of design with emphasis on synthesis. JMD communicates original contributions, primarily in the form of research articles of considerable depth, but also technical briefs, design innovation papers, book reviews, and editorials. Scope: The Journal of Mechanical Design (JMD) serves the broad design community as the venue for scholarly, archival research in all aspects of the design activity with emphasis on design synthesis. JMD has traditionally served the ASME Design Engineering Division and its technical committees, but it welcomes contributions from all areas of design with emphasis on synthesis. JMD communicates original contributions, primarily in the form of research articles of considerable depth, but also technical briefs, design innovation papers, book reviews, and editorials.
期刊最新文献
Joint Special Issue on Advances in Design and Manufacturing for Sustainability Optimization of Tooth Profile Modification Amount and Manufacturing Tolerance Allocation for RV Reducer under Reliability Constraint Critical thinking assessment in engineering education: A Scopus-based literature review Accounting for Machine Learning Prediction Errors in Design Thinking Beyond the Default User: The Impact of Gender, Stereotypes, and Modality on Interpretation of User Needs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1