{"title":"基于MMI微环谐振器的片上光学神经网络图像分类","authors":"T.T. Bui, D.T. Le, T.H.L. Nguyen, T.T. Le","doi":"10.18287/2412-6179-co-1211","DOIUrl":null,"url":null,"abstract":"We propose a new on-chip optical neural network (OONN) based on multimode interference-microring resonators (MMI-RRs). The suggested structure eliminates the need for wavelength division multiplexers (WDM) to create an optical neuron on a single chip. New microring resonator structure based on 4×4 MMI coupler with a size of 24µm × 2900 µm is used for the basic elements of the computation matrix, as a result a higher bandwidth and free spectral range (FSR) can be achieved. The Si3N4 platform along with the graphene sheet is designed to modulate the signals and weights of the neural networks at a very high speed. The Si3N4 can provide wide range of operating wavelengths and can work directly with the wavelengths of color images. The structure's benefits include rapid computing speed, little loss, and the ability to handle both positive and negative values. The OONN has been applied to the MNIST dataset with a speed faster than 2.8 to 14x times compared with the conventional GPU methods.","PeriodicalId":46692,"journal":{"name":"Computer Optics","volume":"32 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On chip optical neural networks based on MMI microring resonators for image classification\",\"authors\":\"T.T. Bui, D.T. Le, T.H.L. Nguyen, T.T. Le\",\"doi\":\"10.18287/2412-6179-co-1211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new on-chip optical neural network (OONN) based on multimode interference-microring resonators (MMI-RRs). The suggested structure eliminates the need for wavelength division multiplexers (WDM) to create an optical neuron on a single chip. New microring resonator structure based on 4×4 MMI coupler with a size of 24µm × 2900 µm is used for the basic elements of the computation matrix, as a result a higher bandwidth and free spectral range (FSR) can be achieved. The Si3N4 platform along with the graphene sheet is designed to modulate the signals and weights of the neural networks at a very high speed. The Si3N4 can provide wide range of operating wavelengths and can work directly with the wavelengths of color images. The structure's benefits include rapid computing speed, little loss, and the ability to handle both positive and negative values. The OONN has been applied to the MNIST dataset with a speed faster than 2.8 to 14x times compared with the conventional GPU methods.\",\"PeriodicalId\":46692,\"journal\":{\"name\":\"Computer Optics\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18287/2412-6179-co-1211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/2412-6179-co-1211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
On chip optical neural networks based on MMI microring resonators for image classification
We propose a new on-chip optical neural network (OONN) based on multimode interference-microring resonators (MMI-RRs). The suggested structure eliminates the need for wavelength division multiplexers (WDM) to create an optical neuron on a single chip. New microring resonator structure based on 4×4 MMI coupler with a size of 24µm × 2900 µm is used for the basic elements of the computation matrix, as a result a higher bandwidth and free spectral range (FSR) can be achieved. The Si3N4 platform along with the graphene sheet is designed to modulate the signals and weights of the neural networks at a very high speed. The Si3N4 can provide wide range of operating wavelengths and can work directly with the wavelengths of color images. The structure's benefits include rapid computing speed, little loss, and the ability to handle both positive and negative values. The OONN has been applied to the MNIST dataset with a speed faster than 2.8 to 14x times compared with the conventional GPU methods.
期刊介绍:
The journal is intended for researchers and specialists active in the following research areas: Diffractive Optics; Information Optical Technology; Nanophotonics and Optics of Nanostructures; Image Analysis & Understanding; Information Coding & Security; Earth Remote Sensing Technologies; Hyperspectral Data Analysis; Numerical Methods for Optics and Image Processing; Intelligent Video Analysis. The journal "Computer Optics" has been published since 1987. Published 6 issues per year.