实时数据转换在行动

IF 2.6 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Proceedings of the Vldb Endowment Pub Date : 2023-08-01 DOI:10.14778/3611540.3611593
Ju Hyoung Mun, Konstantinos Karatsenidis, Tarikul Islam Papon, Shahin Roozkhosh, Denis Hoornaert, Ulrich Drepper, Ahmed Sanaullah, Renato Mancuso, Manos Athanassoulis
{"title":"实时数据转换在行动","authors":"Ju Hyoung Mun, Konstantinos Karatsenidis, Tarikul Islam Papon, Shahin Roozkhosh, Denis Hoornaert, Ulrich Drepper, Ahmed Sanaullah, Renato Mancuso, Manos Athanassoulis","doi":"10.14778/3611540.3611593","DOIUrl":null,"url":null,"abstract":"Transactional and analytical database management systems (DBMS) typically employ different data layouts: row-stores for the first and column-stores for the latter. In order to bridge the requirements of the two without maintaining two systems and two (or more) copies of the data, our proposed system Relational Memory employs specialized hardware that transforms the base row table into arbitrary column groups at query execution time. This approach maximizes the cache locality and is easy to use via a simple abstraction that allows transparent on-the-fly data transformation. Here, we demonstrate how to deploy and use Relational Memory via four representative scenarios. The demonstration uses the full-stack implementation of Relational Memory on the Xilinx Zynq UltraScale+ MPSoC platform. Conference participants will interact with Relational Memory deployed in the actual platform.","PeriodicalId":54220,"journal":{"name":"Proceedings of the Vldb Endowment","volume":"35 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On-the-Fly Data Transformation in Action\",\"authors\":\"Ju Hyoung Mun, Konstantinos Karatsenidis, Tarikul Islam Papon, Shahin Roozkhosh, Denis Hoornaert, Ulrich Drepper, Ahmed Sanaullah, Renato Mancuso, Manos Athanassoulis\",\"doi\":\"10.14778/3611540.3611593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transactional and analytical database management systems (DBMS) typically employ different data layouts: row-stores for the first and column-stores for the latter. In order to bridge the requirements of the two without maintaining two systems and two (or more) copies of the data, our proposed system Relational Memory employs specialized hardware that transforms the base row table into arbitrary column groups at query execution time. This approach maximizes the cache locality and is easy to use via a simple abstraction that allows transparent on-the-fly data transformation. Here, we demonstrate how to deploy and use Relational Memory via four representative scenarios. The demonstration uses the full-stack implementation of Relational Memory on the Xilinx Zynq UltraScale+ MPSoC platform. Conference participants will interact with Relational Memory deployed in the actual platform.\",\"PeriodicalId\":54220,\"journal\":{\"name\":\"Proceedings of the Vldb Endowment\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Vldb Endowment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14778/3611540.3611593\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Vldb Endowment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14778/3611540.3611593","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

事务性和分析性数据库管理系统(DBMS)通常采用不同的数据布局:前者采用行存储,后者采用列存储。为了在不维护两个系统和两个(或更多)数据副本的情况下弥合这两者的需求,我们建议的系统关系内存使用专门的硬件,在查询执行时将基行表转换为任意列组。这种方法最大限度地提高了缓存的局部性,并且通过一个简单的抽象(允许透明的动态数据转换)易于使用。在这里,我们将通过四个代表性场景演示如何部署和使用关系内存。该演示在Xilinx Zynq UltraScale+ MPSoC平台上使用关系内存的全栈实现。会议参与者将与部署在实际平台中的关系内存进行交互。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On-the-Fly Data Transformation in Action
Transactional and analytical database management systems (DBMS) typically employ different data layouts: row-stores for the first and column-stores for the latter. In order to bridge the requirements of the two without maintaining two systems and two (or more) copies of the data, our proposed system Relational Memory employs specialized hardware that transforms the base row table into arbitrary column groups at query execution time. This approach maximizes the cache locality and is easy to use via a simple abstraction that allows transparent on-the-fly data transformation. Here, we demonstrate how to deploy and use Relational Memory via four representative scenarios. The demonstration uses the full-stack implementation of Relational Memory on the Xilinx Zynq UltraScale+ MPSoC platform. Conference participants will interact with Relational Memory deployed in the actual platform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proceedings of the Vldb Endowment
Proceedings of the Vldb Endowment Computer Science-General Computer Science
CiteScore
7.70
自引率
0.00%
发文量
95
期刊介绍: The Proceedings of the VLDB (PVLDB) welcomes original research papers on a broad range of research topics related to all aspects of data management, where systems issues play a significant role, such as data management system technology and information management infrastructures, including their very large scale of experimentation, novel architectures, and demanding applications as well as their underpinning theory. The scope of a submission for PVLDB is also described by the subject areas given below. Moreover, the scope of PVLDB is restricted to scientific areas that are covered by the combined expertise on the submission’s topic of the journal’s editorial board. Finally, the submission’s contributions should build on work already published in data management outlets, e.g., PVLDB, VLDBJ, ACM SIGMOD, IEEE ICDE, EDBT, ACM TODS, IEEE TKDE, and go beyond a syntactic citation.
期刊最新文献
Auditory Brainstem Response in a Child with Mitochondrial Disorder-Leigh Syndrome. Breathing New Life into an Old Tree: Resolving Logging Dilemma of B + -tree on Modern Computational Storage Drives QO-Insight: Inspecting Steered Query Optimizers A Learned Query Rewrite System Demonstrating ADOPT: Adaptively Optimizing Attribute Orders for Worst-Case Optimal Joins via Reinforcement Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1