{"title":"用于假新闻检测的联合卷积变换器","authors":"Youcef Djenouri;Ahmed Nabil Belbachir;Tomasz Michalak;Gautam Srivastava","doi":"10.1109/TBDATA.2023.3325746","DOIUrl":null,"url":null,"abstract":"We present a novel approach to detect fake news in Internet of Things (IoT) applications. By investigating federated learning and trusted authority methods, we address the issue of data security during training. Simultaneously, by investigating convolution transformers and user clustering, we deal with multi-modality issues in fake news data. First, we use dense embedding and the k-means algorithm to cluster users into groups that are similar to one another. We then develop a local model for each user using their local data. The server then receives the local models of users along with clustering information, and a trusted authority verifies their integrity there. We use two different types of aggregation in place of conventional federated learning systems. The initial step is to combine all users’ models to create a single global model. The second step entails compiling each user's model into a local model of comparable users. Both models are supplied to users, who then select the most suitable model for identifying fake news. By conducting extensive experiments using Twitter data, we demonstrate that the proposed method outperforms various baselines, where it achieves an average accuracy of 0.85 in comparison to others that do not exceed 0.81.","PeriodicalId":13106,"journal":{"name":"IEEE Transactions on Big Data","volume":"10 3","pages":"214-225"},"PeriodicalIF":7.5000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Federated Convolution Transformer for Fake News Detection\",\"authors\":\"Youcef Djenouri;Ahmed Nabil Belbachir;Tomasz Michalak;Gautam Srivastava\",\"doi\":\"10.1109/TBDATA.2023.3325746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel approach to detect fake news in Internet of Things (IoT) applications. By investigating federated learning and trusted authority methods, we address the issue of data security during training. Simultaneously, by investigating convolution transformers and user clustering, we deal with multi-modality issues in fake news data. First, we use dense embedding and the k-means algorithm to cluster users into groups that are similar to one another. We then develop a local model for each user using their local data. The server then receives the local models of users along with clustering information, and a trusted authority verifies their integrity there. We use two different types of aggregation in place of conventional federated learning systems. The initial step is to combine all users’ models to create a single global model. The second step entails compiling each user's model into a local model of comparable users. Both models are supplied to users, who then select the most suitable model for identifying fake news. By conducting extensive experiments using Twitter data, we demonstrate that the proposed method outperforms various baselines, where it achieves an average accuracy of 0.85 in comparison to others that do not exceed 0.81.\",\"PeriodicalId\":13106,\"journal\":{\"name\":\"IEEE Transactions on Big Data\",\"volume\":\"10 3\",\"pages\":\"214-225\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Big Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10287640/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Big Data","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10287640/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A Federated Convolution Transformer for Fake News Detection
We present a novel approach to detect fake news in Internet of Things (IoT) applications. By investigating federated learning and trusted authority methods, we address the issue of data security during training. Simultaneously, by investigating convolution transformers and user clustering, we deal with multi-modality issues in fake news data. First, we use dense embedding and the k-means algorithm to cluster users into groups that are similar to one another. We then develop a local model for each user using their local data. The server then receives the local models of users along with clustering information, and a trusted authority verifies their integrity there. We use two different types of aggregation in place of conventional federated learning systems. The initial step is to combine all users’ models to create a single global model. The second step entails compiling each user's model into a local model of comparable users. Both models are supplied to users, who then select the most suitable model for identifying fake news. By conducting extensive experiments using Twitter data, we demonstrate that the proposed method outperforms various baselines, where it achieves an average accuracy of 0.85 in comparison to others that do not exceed 0.81.
期刊介绍:
The IEEE Transactions on Big Data publishes peer-reviewed articles focusing on big data. These articles present innovative research ideas and application results across disciplines, including novel theories, algorithms, and applications. Research areas cover a wide range, such as big data analytics, visualization, curation, management, semantics, infrastructure, standards, performance analysis, intelligence extraction, scientific discovery, security, privacy, and legal issues specific to big data. The journal also prioritizes applications of big data in fields generating massive datasets.