Isaac J. Arnquist, Maria Laura di Vacri, Nicole Rocco, Richard Saldanha, Tyler Schlieder, Raj Patel, Jay Patil, Mario Perez, Harshad Uka
{"title":"超低放射性柔性印刷电缆","authors":"Isaac J. Arnquist, Maria Laura di Vacri, Nicole Rocco, Richard Saldanha, Tyler Schlieder, Raj Patel, Jay Patil, Mario Perez, Harshad Uka","doi":"10.1140/epjti/s40485-023-00104-6","DOIUrl":null,"url":null,"abstract":"Abstract Flexible printed cables and circuitry based on copper-polyimide materials are widely used in experiments looking for rare events due to their unique electrical and mechanical characteristics. However, past studies have found copper-polyimide flexible cables to contain 400-4700 pg 238 U/g, 16-3700 pg 232 Th/g, and 170-2100 ng nat K/g, which can be a significant source of radioactive background for many current and next-generation ultralow background detectors. This study presents a comprehensive investigation into the fabrication process of copper-polyimide flexible cables and the development of custom low radioactivity cables for use in rare-event physics applications. A methodical step-by-step approach was developed and informed by ultrasensitive assay to determine the radiopurity in the starting materials and identify the contaminating production steps in the cable fabrication process. Radiopure material alternatives were identified, and cleaner production processes and treatments were developed to significantly reduce the imparted contamination. Through the newly developed radiopure fabrication process, fully-functioning cables were produced with radiocontaminant concentrations of 20-31 pg 238 U/g, 12-13 pg 232 Th/g, and 40-550 ng nat K/g, which is significantly cleaner than cables from previous work and sufficiently radiopure for current and next-generation detectors. This approach, employing witness samples to investigate each step of the fabrication process, can hopefully serve as a template for investigating radiocontaminants in other material production processes.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Ultra-low radioactivity flexible printed cables\",\"authors\":\"Isaac J. Arnquist, Maria Laura di Vacri, Nicole Rocco, Richard Saldanha, Tyler Schlieder, Raj Patel, Jay Patil, Mario Perez, Harshad Uka\",\"doi\":\"10.1140/epjti/s40485-023-00104-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Flexible printed cables and circuitry based on copper-polyimide materials are widely used in experiments looking for rare events due to their unique electrical and mechanical characteristics. However, past studies have found copper-polyimide flexible cables to contain 400-4700 pg 238 U/g, 16-3700 pg 232 Th/g, and 170-2100 ng nat K/g, which can be a significant source of radioactive background for many current and next-generation ultralow background detectors. This study presents a comprehensive investigation into the fabrication process of copper-polyimide flexible cables and the development of custom low radioactivity cables for use in rare-event physics applications. A methodical step-by-step approach was developed and informed by ultrasensitive assay to determine the radiopurity in the starting materials and identify the contaminating production steps in the cable fabrication process. Radiopure material alternatives were identified, and cleaner production processes and treatments were developed to significantly reduce the imparted contamination. Through the newly developed radiopure fabrication process, fully-functioning cables were produced with radiocontaminant concentrations of 20-31 pg 238 U/g, 12-13 pg 232 Th/g, and 40-550 ng nat K/g, which is significantly cleaner than cables from previous work and sufficiently radiopure for current and next-generation detectors. This approach, employing witness samples to investigate each step of the fabrication process, can hopefully serve as a template for investigating radiocontaminants in other material production processes.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1140/epjti/s40485-023-00104-6\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1140/epjti/s40485-023-00104-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Abstract Flexible printed cables and circuitry based on copper-polyimide materials are widely used in experiments looking for rare events due to their unique electrical and mechanical characteristics. However, past studies have found copper-polyimide flexible cables to contain 400-4700 pg 238 U/g, 16-3700 pg 232 Th/g, and 170-2100 ng nat K/g, which can be a significant source of radioactive background for many current and next-generation ultralow background detectors. This study presents a comprehensive investigation into the fabrication process of copper-polyimide flexible cables and the development of custom low radioactivity cables for use in rare-event physics applications. A methodical step-by-step approach was developed and informed by ultrasensitive assay to determine the radiopurity in the starting materials and identify the contaminating production steps in the cable fabrication process. Radiopure material alternatives were identified, and cleaner production processes and treatments were developed to significantly reduce the imparted contamination. Through the newly developed radiopure fabrication process, fully-functioning cables were produced with radiocontaminant concentrations of 20-31 pg 238 U/g, 12-13 pg 232 Th/g, and 40-550 ng nat K/g, which is significantly cleaner than cables from previous work and sufficiently radiopure for current and next-generation detectors. This approach, employing witness samples to investigate each step of the fabrication process, can hopefully serve as a template for investigating radiocontaminants in other material production processes.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.