Pub Date : 2024-04-05DOI: 10.1140/epjti/s40485-024-00109-9
S. Lauber, W. Barth, M. Basten, F. Dziuba, J. List, M. Miski-Oglu, H. Podlech, S. Yaramyshev
{"title":"Alternating phase focusing beam dynamics for drift tube linacs","authors":"S. Lauber, W. Barth, M. Basten, F. Dziuba, J. List, M. Miski-Oglu, H. Podlech, S. Yaramyshev","doi":"10.1140/epjti/s40485-024-00109-9","DOIUrl":"https://doi.org/10.1140/epjti/s40485-024-00109-9","url":null,"abstract":"","PeriodicalId":44591,"journal":{"name":"EPJ Techniques and Instrumentation","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140735775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-04DOI: 10.1140/epjti/s40485-024-00111-1
Naoya Ozawa, Keisuke Nakamura, Yasuhiro Sakemi
{"title":"Conception, modelling, and characterization of a fiber amplifier with a simple and easy-to-repair configuration intended for the use in harsh environments","authors":"Naoya Ozawa, Keisuke Nakamura, Yasuhiro Sakemi","doi":"10.1140/epjti/s40485-024-00111-1","DOIUrl":"https://doi.org/10.1140/epjti/s40485-024-00111-1","url":null,"abstract":"","PeriodicalId":44591,"journal":{"name":"EPJ Techniques and Instrumentation","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140742013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-04DOI: 10.1140/epjti/s40485-024-00110-2
Chengbo Li, Xuepeng Sun, Zhiguo Liu, Chungang Guo, Xiaoming Li
{"title":"Update of high voltage isolation control and monitoring system for HVE-400 ion implanter","authors":"Chengbo Li, Xuepeng Sun, Zhiguo Liu, Chungang Guo, Xiaoming Li","doi":"10.1140/epjti/s40485-024-00110-2","DOIUrl":"https://doi.org/10.1140/epjti/s40485-024-00110-2","url":null,"abstract":"","PeriodicalId":44591,"journal":{"name":"EPJ Techniques and Instrumentation","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140742099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-05DOI: 10.1140/epjti/s40485-023-00105-5
Hiroaki Kumada, Takeji Sakae, Hideyuki Sakurai
Abstract Recently, progress in technology for accelerator-based neutron sources has increased attention regarding boron neutron capture therapy (BNCT). BNCT is a type of radiotherapy that combines neutrons and boron drugs and is expected to be used in the treatment of refractory and recurrent cancers. Owing to the need for high-intensity neutrons in treatment, compact accelerator-based neutron sources applicable to BNCT are being developed worldwide. These current projects utilize cyclotrons, linear accelerators, and electrostatic accelerators as accelerators for BNCT devices. Beryllium and lithium are the main target materials for neutron generation. The accelerators for BNCT device are required to accelerate charged particles with an average current ranging from a few milliamperes to a few tens of milliamperes in order to generate neutrons of sufficient intensity for the treatment. Moreover, the target systems require technologies and mechanisms that can withstand the large heat load produced by high-power beam irradiation and prevent blistering. This review outlines and explains the accelerator neutron sources for BNCT and the requirements for the components of each device, such as the accelerator, target material, and beam shaping assembly. In addition, various development projects for accelerator-based BNCT devices worldwide are introduced.
{"title":"Current development status of accelerator-based neutron source for boron neutron capture therapy","authors":"Hiroaki Kumada, Takeji Sakae, Hideyuki Sakurai","doi":"10.1140/epjti/s40485-023-00105-5","DOIUrl":"https://doi.org/10.1140/epjti/s40485-023-00105-5","url":null,"abstract":"Abstract Recently, progress in technology for accelerator-based neutron sources has increased attention regarding boron neutron capture therapy (BNCT). BNCT is a type of radiotherapy that combines neutrons and boron drugs and is expected to be used in the treatment of refractory and recurrent cancers. Owing to the need for high-intensity neutrons in treatment, compact accelerator-based neutron sources applicable to BNCT are being developed worldwide. These current projects utilize cyclotrons, linear accelerators, and electrostatic accelerators as accelerators for BNCT devices. Beryllium and lithium are the main target materials for neutron generation. The accelerators for BNCT device are required to accelerate charged particles with an average current ranging from a few milliamperes to a few tens of milliamperes in order to generate neutrons of sufficient intensity for the treatment. Moreover, the target systems require technologies and mechanisms that can withstand the large heat load produced by high-power beam irradiation and prevent blistering. This review outlines and explains the accelerator neutron sources for BNCT and the requirements for the components of each device, such as the accelerator, target material, and beam shaping assembly. In addition, various development projects for accelerator-based BNCT devices worldwide are introduced.","PeriodicalId":44591,"journal":{"name":"EPJ Techniques and Instrumentation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134975987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-19DOI: 10.1140/epjti/s40485-023-00104-6
Isaac J. Arnquist, Maria Laura di Vacri, Nicole Rocco, Richard Saldanha, Tyler Schlieder, Raj Patel, Jay Patil, Mario Perez, Harshad Uka
Abstract Flexible printed cables and circuitry based on copper-polyimide materials are widely used in experiments looking for rare events due to their unique electrical and mechanical characteristics. However, past studies have found copper-polyimide flexible cables to contain 400-4700 pg 238 U/g, 16-3700 pg 232 Th/g, and 170-2100 ng nat K/g, which can be a significant source of radioactive background for many current and next-generation ultralow background detectors. This study presents a comprehensive investigation into the fabrication process of copper-polyimide flexible cables and the development of custom low radioactivity cables for use in rare-event physics applications. A methodical step-by-step approach was developed and informed by ultrasensitive assay to determine the radiopurity in the starting materials and identify the contaminating production steps in the cable fabrication process. Radiopure material alternatives were identified, and cleaner production processes and treatments were developed to significantly reduce the imparted contamination. Through the newly developed radiopure fabrication process, fully-functioning cables were produced with radiocontaminant concentrations of 20-31 pg 238 U/g, 12-13 pg 232 Th/g, and 40-550 ng nat K/g, which is significantly cleaner than cables from previous work and sufficiently radiopure for current and next-generation detectors. This approach, employing witness samples to investigate each step of the fabrication process, can hopefully serve as a template for investigating radiocontaminants in other material production processes.
{"title":"Ultra-low radioactivity flexible printed cables","authors":"Isaac J. Arnquist, Maria Laura di Vacri, Nicole Rocco, Richard Saldanha, Tyler Schlieder, Raj Patel, Jay Patil, Mario Perez, Harshad Uka","doi":"10.1140/epjti/s40485-023-00104-6","DOIUrl":"https://doi.org/10.1140/epjti/s40485-023-00104-6","url":null,"abstract":"Abstract Flexible printed cables and circuitry based on copper-polyimide materials are widely used in experiments looking for rare events due to their unique electrical and mechanical characteristics. However, past studies have found copper-polyimide flexible cables to contain 400-4700 pg 238 U/g, 16-3700 pg 232 Th/g, and 170-2100 ng nat K/g, which can be a significant source of radioactive background for many current and next-generation ultralow background detectors. This study presents a comprehensive investigation into the fabrication process of copper-polyimide flexible cables and the development of custom low radioactivity cables for use in rare-event physics applications. A methodical step-by-step approach was developed and informed by ultrasensitive assay to determine the radiopurity in the starting materials and identify the contaminating production steps in the cable fabrication process. Radiopure material alternatives were identified, and cleaner production processes and treatments were developed to significantly reduce the imparted contamination. Through the newly developed radiopure fabrication process, fully-functioning cables were produced with radiocontaminant concentrations of 20-31 pg 238 U/g, 12-13 pg 232 Th/g, and 40-550 ng nat K/g, which is significantly cleaner than cables from previous work and sufficiently radiopure for current and next-generation detectors. This approach, employing witness samples to investigate each step of the fabrication process, can hopefully serve as a template for investigating radiocontaminants in other material production processes.","PeriodicalId":44591,"journal":{"name":"EPJ Techniques and Instrumentation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135014224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-13DOI: 10.1140/epjti/s40485-023-00103-7
M. Boscolo, F. Palla, F. Bosi, Francesco Fransesini, S. Lauciani
{"title":"Mechanical model for the FCC-ee interaction region","authors":"M. Boscolo, F. Palla, F. Bosi, Francesco Fransesini, S. Lauciani","doi":"10.1140/epjti/s40485-023-00103-7","DOIUrl":"https://doi.org/10.1140/epjti/s40485-023-00103-7","url":null,"abstract":"","PeriodicalId":44591,"journal":{"name":"EPJ Techniques and Instrumentation","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41817544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-31DOI: 10.1140/epjti/s40485-023-00101-9
R. Frost, M. Elfman, K. Fissum, P. Kristiansson, N. Mauritzson, J. Pallon, G. Pédehontaa-Hiaa, H. Perrey, K. E. Stenström, A. Sjöland
{"title":"A compact accelerator driven neutron source at the Applied Nuclear Physics Laboratory, Lund University","authors":"R. Frost, M. Elfman, K. Fissum, P. Kristiansson, N. Mauritzson, J. Pallon, G. Pédehontaa-Hiaa, H. Perrey, K. E. Stenström, A. Sjöland","doi":"10.1140/epjti/s40485-023-00101-9","DOIUrl":"https://doi.org/10.1140/epjti/s40485-023-00101-9","url":null,"abstract":"","PeriodicalId":44591,"journal":{"name":"EPJ Techniques and Instrumentation","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45349538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-17DOI: 10.1140/epjti/s40485-023-00100-w
N. Patronis, A. Mengoni, S. Goula, O. Aberle, V. Alcayne, S. Altieri, S. Amaducci, J. Andrzejewski, V. Babiano-Suárez, M. Bacak, J. Balibrea Correa, C. Beltrami, S. Bennett, A. Bernardes, E. Berthoumieux, R. Beyer, M. Boromiza, D. Bosnar, M. Caamano, F. Calviño, M. Calviani, D. Cano-Ott, A. Casanovas, D. Castelluccio, F. Cerutti, G. Cescutti, S. Chasapoglou, E. Chiaveri, P. Colombetti, N. Colonna, P. C. Console Camprini, G. Cortes, M. Cortés-Giraldo, L. Cosentino, S. Cristallo, S. Dellmann, M. di Castro, S. Di Maria, M. Diakaki, M. Dietz, C. Domingo-Pardo, R. Dressler, E. Dupont, I. Durán, Z. Eleme, S. Fargier, B. Fernández, B. Fernández-Domínguez, P. Finocchiaro, S. Fiore, F. Garcia-Infantes, A. Gawlik-Ramięga, G. Gervino, S. Gilardoni, E. González-Romero, C. Guerrero, F. Gunsing, C. Gustavino, J. Heyse, W. Hillman, D. Jenkins, E. Jericha, A. Junghans, Y. Kadi, K. Kaperoni, G. Kaur, A. Kimura, I. Knapová, M. Kokkoris, M. Krticka, N. Kyritsis, I. Ladarescu, C. Lederer-Woods, J. Lerendegui-Marco, G. Lerne
{"title":"Status report of the n_TOF facility after the 2nd CERN long shutdown period","authors":"N. Patronis, A. Mengoni, S. Goula, O. Aberle, V. Alcayne, S. Altieri, S. Amaducci, J. Andrzejewski, V. Babiano-Suárez, M. Bacak, J. Balibrea Correa, C. Beltrami, S. Bennett, A. Bernardes, E. Berthoumieux, R. Beyer, M. Boromiza, D. Bosnar, M. Caamano, F. Calviño, M. Calviani, D. Cano-Ott, A. Casanovas, D. Castelluccio, F. Cerutti, G. Cescutti, S. Chasapoglou, E. Chiaveri, P. Colombetti, N. Colonna, P. C. Console Camprini, G. Cortes, M. Cortés-Giraldo, L. Cosentino, S. Cristallo, S. Dellmann, M. di Castro, S. Di Maria, M. Diakaki, M. Dietz, C. Domingo-Pardo, R. Dressler, E. Dupont, I. Durán, Z. Eleme, S. Fargier, B. Fernández, B. Fernández-Domínguez, P. Finocchiaro, S. Fiore, F. Garcia-Infantes, A. Gawlik-Ramięga, G. Gervino, S. Gilardoni, E. González-Romero, C. Guerrero, F. Gunsing, C. Gustavino, J. Heyse, W. Hillman, D. Jenkins, E. Jericha, A. Junghans, Y. Kadi, K. Kaperoni, G. Kaur, A. Kimura, I. Knapová, M. Kokkoris, M. Krticka, N. Kyritsis, I. Ladarescu, C. Lederer-Woods, J. Lerendegui-Marco, G. Lerne","doi":"10.1140/epjti/s40485-023-00100-w","DOIUrl":"https://doi.org/10.1140/epjti/s40485-023-00100-w","url":null,"abstract":"","PeriodicalId":44591,"journal":{"name":"EPJ Techniques and Instrumentation","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42268977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-17DOI: 10.1140/epjti/s40485-023-00099-0
H. Kersten
{"title":"Diagnostics for electric propulsion systems","authors":"H. Kersten","doi":"10.1140/epjti/s40485-023-00099-0","DOIUrl":"https://doi.org/10.1140/epjti/s40485-023-00099-0","url":null,"abstract":"","PeriodicalId":44591,"journal":{"name":"EPJ Techniques and Instrumentation","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42772361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}