{"title":"在Ar或Ar - nh3 DBDs中注入金属盐合成含金nps薄膜","authors":"Alexandre Perdrau, Noémi Barros, Rocío Rincón, Hervé Glénat, Stéphanie Truong, Sarra Gam Derouich, Xiaonan Sun, Philippe Decorse, Sophie Nowak, Béatrice Plujat, Souad Ammar, Jean-Pascal Borra, Fiorenza Fanelli, Françoise Massines","doi":"10.1007/s11090-023-10400-4","DOIUrl":null,"url":null,"abstract":"<div><p>This study focuses on metal/polymer nanocomposite thin films made by atmospheric pressure Plasma-Enhanced Chemical Vapor Deposition. The aerosol of isopropanol-dissolved tetrachloroauric acid (HAuCl<sub>4</sub>:3H<sub>2</sub>O gold salt) is injected in a dielectric barrier discharge to synthesize plasmonic nanocomposite thin films. Argon is used as carrier gas with or without 133 ppm addition of ammonia (NH<sub>3</sub>) to respectively get or not a Penning mixture. Results show that NH<sub>3</sub> largely influences the salt reduction and thin film properties. According to the aerosol characterization, the size distribution at the plasma entrance supports that isopropanol mainly evaporates before injection in the plasma. The salt initially dissolved in each droplet precipitates during evaporation before injection as solid nanoparticles of about 30 nm diameter with eventual traces of solvent. Then, the nanocomposite thins film are studied. Optical properties, as plasmonic resonance, are characterized by UV–visible absorption spectroscopy. The chemical composition is analyzed using X-ray photoelectron spectroscopy and Raman spectroscopy, complemented by X-ray diffraction analysis as well as chemical mapping obtained by Energy dispersive spectroscopy coupled to scanning electron microscopy (SEM) operating in Scanning Transmission Electron Microscopy mode. Additionally, the morphology of the deposits is investigated by atomic force microscopy and SEM, highlighting the influence of NH<sub>3</sub> gas on the film nature and therefore its role in the overall deposition process. Finally, optical emission spectroscopy of the plasma gives clue to better understand the effect of NH<sub>3</sub>. The overall results show that the salt nanoparticles are reduced in the plasma phase leading to non-aggregated metal Au NPs embedded in a carbon-based matrix formed by isopropanol polymerization. The presence of NH<sub>3</sub> in the plasma unambiguously decreases the salt reduction and affects the thin film properties, consequently changing their plasmonic response related to the size, concentration, and composition of the embedded NPs.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Synthesis of Gold NPs-Containing Thin Films from Metal Salt Injection in Ar or Ar–NH3 DBDs\",\"authors\":\"Alexandre Perdrau, Noémi Barros, Rocío Rincón, Hervé Glénat, Stéphanie Truong, Sarra Gam Derouich, Xiaonan Sun, Philippe Decorse, Sophie Nowak, Béatrice Plujat, Souad Ammar, Jean-Pascal Borra, Fiorenza Fanelli, Françoise Massines\",\"doi\":\"10.1007/s11090-023-10400-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study focuses on metal/polymer nanocomposite thin films made by atmospheric pressure Plasma-Enhanced Chemical Vapor Deposition. The aerosol of isopropanol-dissolved tetrachloroauric acid (HAuCl<sub>4</sub>:3H<sub>2</sub>O gold salt) is injected in a dielectric barrier discharge to synthesize plasmonic nanocomposite thin films. Argon is used as carrier gas with or without 133 ppm addition of ammonia (NH<sub>3</sub>) to respectively get or not a Penning mixture. Results show that NH<sub>3</sub> largely influences the salt reduction and thin film properties. According to the aerosol characterization, the size distribution at the plasma entrance supports that isopropanol mainly evaporates before injection in the plasma. The salt initially dissolved in each droplet precipitates during evaporation before injection as solid nanoparticles of about 30 nm diameter with eventual traces of solvent. Then, the nanocomposite thins film are studied. Optical properties, as plasmonic resonance, are characterized by UV–visible absorption spectroscopy. The chemical composition is analyzed using X-ray photoelectron spectroscopy and Raman spectroscopy, complemented by X-ray diffraction analysis as well as chemical mapping obtained by Energy dispersive spectroscopy coupled to scanning electron microscopy (SEM) operating in Scanning Transmission Electron Microscopy mode. Additionally, the morphology of the deposits is investigated by atomic force microscopy and SEM, highlighting the influence of NH<sub>3</sub> gas on the film nature and therefore its role in the overall deposition process. Finally, optical emission spectroscopy of the plasma gives clue to better understand the effect of NH<sub>3</sub>. The overall results show that the salt nanoparticles are reduced in the plasma phase leading to non-aggregated metal Au NPs embedded in a carbon-based matrix formed by isopropanol polymerization. The presence of NH<sub>3</sub> in the plasma unambiguously decreases the salt reduction and affects the thin film properties, consequently changing their plasmonic response related to the size, concentration, and composition of the embedded NPs.</p></div>\",\"PeriodicalId\":734,\"journal\":{\"name\":\"Plasma Chemistry and Plasma Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Chemistry and Plasma Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11090-023-10400-4\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11090-023-10400-4","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Synthesis of Gold NPs-Containing Thin Films from Metal Salt Injection in Ar or Ar–NH3 DBDs
This study focuses on metal/polymer nanocomposite thin films made by atmospheric pressure Plasma-Enhanced Chemical Vapor Deposition. The aerosol of isopropanol-dissolved tetrachloroauric acid (HAuCl4:3H2O gold salt) is injected in a dielectric barrier discharge to synthesize plasmonic nanocomposite thin films. Argon is used as carrier gas with or without 133 ppm addition of ammonia (NH3) to respectively get or not a Penning mixture. Results show that NH3 largely influences the salt reduction and thin film properties. According to the aerosol characterization, the size distribution at the plasma entrance supports that isopropanol mainly evaporates before injection in the plasma. The salt initially dissolved in each droplet precipitates during evaporation before injection as solid nanoparticles of about 30 nm diameter with eventual traces of solvent. Then, the nanocomposite thins film are studied. Optical properties, as plasmonic resonance, are characterized by UV–visible absorption spectroscopy. The chemical composition is analyzed using X-ray photoelectron spectroscopy and Raman spectroscopy, complemented by X-ray diffraction analysis as well as chemical mapping obtained by Energy dispersive spectroscopy coupled to scanning electron microscopy (SEM) operating in Scanning Transmission Electron Microscopy mode. Additionally, the morphology of the deposits is investigated by atomic force microscopy and SEM, highlighting the influence of NH3 gas on the film nature and therefore its role in the overall deposition process. Finally, optical emission spectroscopy of the plasma gives clue to better understand the effect of NH3. The overall results show that the salt nanoparticles are reduced in the plasma phase leading to non-aggregated metal Au NPs embedded in a carbon-based matrix formed by isopropanol polymerization. The presence of NH3 in the plasma unambiguously decreases the salt reduction and affects the thin film properties, consequently changing their plasmonic response related to the size, concentration, and composition of the embedded NPs.
期刊介绍:
Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.