REVAMP:通过自动元条形码管道快速探索和可视化

IF 3.2 4区 地球科学 Q1 OCEANOGRAPHY Oceanography Pub Date : 2023-01-01 DOI:10.5670/oceanog.2023.231
Sean McAllister, Christopher Paight, Emily Norton, Matthew Galaska
{"title":"REVAMP:通过自动元条形码管道快速探索和可视化","authors":"Sean McAllister, Christopher Paight, Emily Norton, Matthew Galaska","doi":"10.5670/oceanog.2023.231","DOIUrl":null,"url":null,"abstract":"The revolution and acceleration in DNA sequencing over the past three decades has driven the development of new biomolecular tools like environmental DNA (eDNA) metabarcoding for characterizing marine biodiversity. In order to operationalize eDNA approaches for routine NOAA observatories, new bioinformatic programs and improved organismal reference barcodes are needed to serve accurate and reliable biological data in a timely manner. To address these needs, we present Rapid Exploration and Visualization through an Automated Metabarcoding Pipeline (REVAMP), which provides streamlined end-to-end data processing from raw reads to data exploration, visualization, and hypothesis generation. One benefit of REVAMP is the ability to iteratively assess marker gene and reference database performance. Here, we used a filtered reference database that only included sequences uploaded prior to specified date cutoffs from 1995 to 2022 to analyze changes in eDNA metabarcoding taxonomic assignments, revealing patterns of uneven improvement in taxonomic assignment depth and accuracy across time, region, and marker sets. This work highlights the need for targeted reference sequencing efforts for key regional taxa and the importance of such efforts for improving eDNA biomonitoring approaches in the future.","PeriodicalId":54695,"journal":{"name":"Oceanography","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"REVAMP: Rapid Exploration and Visualization through an Automated Metabarcoding Pipeline\",\"authors\":\"Sean McAllister, Christopher Paight, Emily Norton, Matthew Galaska\",\"doi\":\"10.5670/oceanog.2023.231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The revolution and acceleration in DNA sequencing over the past three decades has driven the development of new biomolecular tools like environmental DNA (eDNA) metabarcoding for characterizing marine biodiversity. In order to operationalize eDNA approaches for routine NOAA observatories, new bioinformatic programs and improved organismal reference barcodes are needed to serve accurate and reliable biological data in a timely manner. To address these needs, we present Rapid Exploration and Visualization through an Automated Metabarcoding Pipeline (REVAMP), which provides streamlined end-to-end data processing from raw reads to data exploration, visualization, and hypothesis generation. One benefit of REVAMP is the ability to iteratively assess marker gene and reference database performance. Here, we used a filtered reference database that only included sequences uploaded prior to specified date cutoffs from 1995 to 2022 to analyze changes in eDNA metabarcoding taxonomic assignments, revealing patterns of uneven improvement in taxonomic assignment depth and accuracy across time, region, and marker sets. This work highlights the need for targeted reference sequencing efforts for key regional taxa and the importance of such efforts for improving eDNA biomonitoring approaches in the future.\",\"PeriodicalId\":54695,\"journal\":{\"name\":\"Oceanography\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oceanography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5670/oceanog.2023.231\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oceanography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5670/oceanog.2023.231","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

摘要

在过去的三十年中,DNA测序的革命和加速推动了新的生物分子工具的发展,如用于表征海洋生物多样性的环境DNA (eDNA)元条形码。为了将eDNA方法应用于NOAA的常规观测站,需要新的生物信息学计划和改进的生物参考条形码,以及时提供准确可靠的生物数据。为了满足这些需求,我们通过自动元条形码管道(REVAMP)提出了快速探索和可视化,它提供了从原始读取到数据探索、可视化和假设生成的流线型端到端数据处理。REVAMP的一个好处是能够迭代地评估标记基因和参考数据库的性能。在这里,我们使用筛选后的参考数据库(仅包括1995年至2022年指定截止日期之前上传的序列)来分析eDNA元条形码分类分配的变化,揭示了不同时间、区域和标记集在分类分配深度和准确性方面的不均衡改善模式。这项工作强调了对关键区域分类群进行有针对性的参考测序工作的必要性,以及这些工作对未来改进eDNA生物监测方法的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
REVAMP: Rapid Exploration and Visualization through an Automated Metabarcoding Pipeline
The revolution and acceleration in DNA sequencing over the past three decades has driven the development of new biomolecular tools like environmental DNA (eDNA) metabarcoding for characterizing marine biodiversity. In order to operationalize eDNA approaches for routine NOAA observatories, new bioinformatic programs and improved organismal reference barcodes are needed to serve accurate and reliable biological data in a timely manner. To address these needs, we present Rapid Exploration and Visualization through an Automated Metabarcoding Pipeline (REVAMP), which provides streamlined end-to-end data processing from raw reads to data exploration, visualization, and hypothesis generation. One benefit of REVAMP is the ability to iteratively assess marker gene and reference database performance. Here, we used a filtered reference database that only included sequences uploaded prior to specified date cutoffs from 1995 to 2022 to analyze changes in eDNA metabarcoding taxonomic assignments, revealing patterns of uneven improvement in taxonomic assignment depth and accuracy across time, region, and marker sets. This work highlights the need for targeted reference sequencing efforts for key regional taxa and the importance of such efforts for improving eDNA biomonitoring approaches in the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Oceanography
Oceanography 地学-海洋学
CiteScore
6.10
自引率
3.60%
发文量
39
审稿时长
6-12 weeks
期刊介绍: First published in July 1988, Oceanography is the official magazine of The Oceanography Society. It contains peer-reviewed articles that chronicle all aspects of ocean science and its applications. In addition, Oceanography solicits and publishes news and information, meeting reports, hands-on laboratory exercises, career profiles, book reviews, and shorter, editor-reviewed articles that address public policy and education and how they are affected by science and technology. We encourage submission of short papers to the Breaking Waves section that describe novel approaches to multidisciplinary problems in ocean science.
期刊最新文献
Cooperative Learning in Oceanography Unpaid Internships Are a Barrier to Diverse and Equitable Recruitment in Marine Science Hot Vents Beneath an Icy Ocean: The Aurora Vent Field, Gakkel Ridge, Revealed Evaluating the Evolving Ocean Acidification Risk to Dungeness Crab: Time-Series Observations and Modeling on the Olympic Coast, Washington, USA Global Synthesis of the Status and Trends of Ocean Acidification Impacts on Shelled Pteropods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1