Patricia Quinn, Timothy Bates, Derek Coffman, James Johnson, Lucia Upchurch
{"title":"非海盐硫酸盐和海雾气溶胶在大气海洋边界层中的气候作用:40年PMEL研究的亮点","authors":"Patricia Quinn, Timothy Bates, Derek Coffman, James Johnson, Lucia Upchurch","doi":"10.5670/oceanog.2023.202","DOIUrl":null,"url":null,"abstract":"The Pacific Marine Environmental Laboratory (PMEL) began measurements of dimethylsulfide (DMS) in 1982 to better understand the seawater sulfur cycle and the contribution of seawater DMS emissions to the global atmospheric sulfur budget. These measurements led to a global ocean database of DMS seawater concentrations currently hosted at PMEL, with contributions from researchers worldwide. In the mid-1980s, PMEL followed DMS from the ocean into the atmosphere and began aerosol measurements. It was found that DMS-derived, biogenic sulfate can make up a large fraction of the submicron aerosol in the remote marine atmosphere. In addition, it was found that a significant and variable fraction of submicron aerosol over the ocean was composed not only of biogenic sulfate but also included sea spray aerosol and long-range transported components. These measurements were pioneering in providing evidence that marine aerosols are a complex mixture of chemical components that should be included in climate models in order to accurately model Earth’s radiation budget. Measurements from 27 cruises have helped form a coherent view of species responsible for aerosol light scattering and cloud drop nucleation in the marine boundary layer. This global database of aerosol properties is publicly available on PMEL web pages for use by the modeling and satellite communities. Most recently, PMEL has developed payloads for uncrewed aerial systems to extend surface shipboard measurements up to 3,000 m in altitude and to include measurements of cloud properties.","PeriodicalId":54695,"journal":{"name":"Oceanography","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Climate Roles of Non-Sea Salt Sulfate and Sea Spray Aerosol in the Atmospheric Marine Boundary Layer: Highlights of 40 Years of PMEL Research\",\"authors\":\"Patricia Quinn, Timothy Bates, Derek Coffman, James Johnson, Lucia Upchurch\",\"doi\":\"10.5670/oceanog.2023.202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Pacific Marine Environmental Laboratory (PMEL) began measurements of dimethylsulfide (DMS) in 1982 to better understand the seawater sulfur cycle and the contribution of seawater DMS emissions to the global atmospheric sulfur budget. These measurements led to a global ocean database of DMS seawater concentrations currently hosted at PMEL, with contributions from researchers worldwide. In the mid-1980s, PMEL followed DMS from the ocean into the atmosphere and began aerosol measurements. It was found that DMS-derived, biogenic sulfate can make up a large fraction of the submicron aerosol in the remote marine atmosphere. In addition, it was found that a significant and variable fraction of submicron aerosol over the ocean was composed not only of biogenic sulfate but also included sea spray aerosol and long-range transported components. These measurements were pioneering in providing evidence that marine aerosols are a complex mixture of chemical components that should be included in climate models in order to accurately model Earth’s radiation budget. Measurements from 27 cruises have helped form a coherent view of species responsible for aerosol light scattering and cloud drop nucleation in the marine boundary layer. This global database of aerosol properties is publicly available on PMEL web pages for use by the modeling and satellite communities. Most recently, PMEL has developed payloads for uncrewed aerial systems to extend surface shipboard measurements up to 3,000 m in altitude and to include measurements of cloud properties.\",\"PeriodicalId\":54695,\"journal\":{\"name\":\"Oceanography\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oceanography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5670/oceanog.2023.202\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oceanography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5670/oceanog.2023.202","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
Climate Roles of Non-Sea Salt Sulfate and Sea Spray Aerosol in the Atmospheric Marine Boundary Layer: Highlights of 40 Years of PMEL Research
The Pacific Marine Environmental Laboratory (PMEL) began measurements of dimethylsulfide (DMS) in 1982 to better understand the seawater sulfur cycle and the contribution of seawater DMS emissions to the global atmospheric sulfur budget. These measurements led to a global ocean database of DMS seawater concentrations currently hosted at PMEL, with contributions from researchers worldwide. In the mid-1980s, PMEL followed DMS from the ocean into the atmosphere and began aerosol measurements. It was found that DMS-derived, biogenic sulfate can make up a large fraction of the submicron aerosol in the remote marine atmosphere. In addition, it was found that a significant and variable fraction of submicron aerosol over the ocean was composed not only of biogenic sulfate but also included sea spray aerosol and long-range transported components. These measurements were pioneering in providing evidence that marine aerosols are a complex mixture of chemical components that should be included in climate models in order to accurately model Earth’s radiation budget. Measurements from 27 cruises have helped form a coherent view of species responsible for aerosol light scattering and cloud drop nucleation in the marine boundary layer. This global database of aerosol properties is publicly available on PMEL web pages for use by the modeling and satellite communities. Most recently, PMEL has developed payloads for uncrewed aerial systems to extend surface shipboard measurements up to 3,000 m in altitude and to include measurements of cloud properties.
期刊介绍:
First published in July 1988, Oceanography is the official magazine of The Oceanography Society. It contains peer-reviewed articles that chronicle all aspects of ocean science and its applications. In addition, Oceanography solicits and publishes news and information, meeting reports, hands-on laboratory exercises, career profiles, book reviews, and shorter, editor-reviewed articles that address public policy and education and how they are affected by science and technology. We encourage submission of short papers to the Breaking Waves section that describe novel approaches to multidisciplinary problems in ocean science.