基于角概率积分变换的二元独立性检验,重点是圆-圆和圆-线性数据

IF 0.6 Q4 STATISTICS & PROBABILITY Dependence Modeling Pub Date : 2023-01-01 DOI:10.1515/demo-2023-0103
Juan José Fernández-Durán, María Mercedes Gregorio-Domínguez
{"title":"基于角概率积分变换的二元独立性检验,重点是圆-圆和圆-线性数据","authors":"Juan José Fernández-Durán, María Mercedes Gregorio-Domínguez","doi":"10.1515/demo-2023-0103","DOIUrl":null,"url":null,"abstract":"Abstract The probability integral transform of a continuous random variable <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>X</m:mi> </m:math> X with distribution function <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi>F</m:mi> </m:mrow> <m:mrow> <m:mi>X</m:mi> </m:mrow> </m:msub> </m:math> {F}_{X} is a uniformly distributed random variable <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>U</m:mi> <m:mo>=</m:mo> <m:msub> <m:mrow> <m:mi>F</m:mi> </m:mrow> <m:mrow> <m:mi>X</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>X</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> U={F}_{X}\\left(X) . We define the angular probability integral transform (APIT) as <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi>θ</m:mi> </m:mrow> <m:mrow> <m:mi>U</m:mi> </m:mrow> </m:msub> <m:mo>=</m:mo> <m:mn>2</m:mn> <m:mi>π</m:mi> <m:mi>U</m:mi> <m:mo>=</m:mo> <m:mn>2</m:mn> <m:mi>π</m:mi> <m:msub> <m:mrow> <m:mi>F</m:mi> </m:mrow> <m:mrow> <m:mi>X</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>X</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> {\\theta }_{U}=2\\pi U=2\\pi {F}_{X}\\left(X) , which corresponds to a uniformly distributed angle on the unit circle. For circular (angular) random variables, the sum modulus 2 <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>π</m:mi> </m:math> \\pi of absolutely continuous independent circular uniform random variables is a circular uniform random variable, that is, the circular uniform distribution is closed under summation modulus 2 <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>π</m:mi> </m:math> \\pi , and it is a stable continuous distribution on the unit circle. If we consider the sum (difference) of the APITs of two random variables, <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi>X</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> </m:math> {X}_{1} and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi>X</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msub> </m:math> {X}_{2} , and test for the circular uniformity of their sum (difference) modulus 2 <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>π</m:mi> </m:math> \\pi , this is equivalent to test of independence of the original variables. In this study, we used a flexible family of nonnegative trigonometric sums (NNTS) circular distributions, which include the uniform circular distribution as a member of the family, to evaluate the power of the proposed independence test by generating samples from NNTS alternative distributions that could be at a closer proximity with respect to the circular uniform null distribution.","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":"25 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Test of bivariate independence based on angular probability integral transform with emphasis on circular-circular and circular-linear data\",\"authors\":\"Juan José Fernández-Durán, María Mercedes Gregorio-Domínguez\",\"doi\":\"10.1515/demo-2023-0103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The probability integral transform of a continuous random variable <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>X</m:mi> </m:math> X with distribution function <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mrow> <m:mi>F</m:mi> </m:mrow> <m:mrow> <m:mi>X</m:mi> </m:mrow> </m:msub> </m:math> {F}_{X} is a uniformly distributed random variable <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>U</m:mi> <m:mo>=</m:mo> <m:msub> <m:mrow> <m:mi>F</m:mi> </m:mrow> <m:mrow> <m:mi>X</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>X</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> U={F}_{X}\\\\left(X) . We define the angular probability integral transform (APIT) as <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mrow> <m:mi>θ</m:mi> </m:mrow> <m:mrow> <m:mi>U</m:mi> </m:mrow> </m:msub> <m:mo>=</m:mo> <m:mn>2</m:mn> <m:mi>π</m:mi> <m:mi>U</m:mi> <m:mo>=</m:mo> <m:mn>2</m:mn> <m:mi>π</m:mi> <m:msub> <m:mrow> <m:mi>F</m:mi> </m:mrow> <m:mrow> <m:mi>X</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>X</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> {\\\\theta }_{U}=2\\\\pi U=2\\\\pi {F}_{X}\\\\left(X) , which corresponds to a uniformly distributed angle on the unit circle. For circular (angular) random variables, the sum modulus 2 <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>π</m:mi> </m:math> \\\\pi of absolutely continuous independent circular uniform random variables is a circular uniform random variable, that is, the circular uniform distribution is closed under summation modulus 2 <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>π</m:mi> </m:math> \\\\pi , and it is a stable continuous distribution on the unit circle. If we consider the sum (difference) of the APITs of two random variables, <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mrow> <m:mi>X</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> </m:math> {X}_{1} and <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mrow> <m:mi>X</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msub> </m:math> {X}_{2} , and test for the circular uniformity of their sum (difference) modulus 2 <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>π</m:mi> </m:math> \\\\pi , this is equivalent to test of independence of the original variables. In this study, we used a flexible family of nonnegative trigonometric sums (NNTS) circular distributions, which include the uniform circular distribution as a member of the family, to evaluate the power of the proposed independence test by generating samples from NNTS alternative distributions that could be at a closer proximity with respect to the circular uniform null distribution.\",\"PeriodicalId\":43690,\"journal\":{\"name\":\"Dependence Modeling\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dependence Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/demo-2023-0103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dependence Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/demo-2023-0103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

连续随机变量X X对分布函数F X {F_X}的概率积分变换是均匀分布随机变量U=F X (X) U={F_X}{}{}\left (X)。我们定义角概率积分变换(APIT)为θ U=2 π U=2 π F X (X) {\theta _U}=2{}\pi U=2 \pi F_X{}{}\left (X),它对应于单位圆上的均匀分布角。对于圆(角)随机变量,绝对连续独立圆形均匀随机变量的和模2 π \pi为圆形均匀随机变量,即圆形均匀分布在和模2 π \pi下闭合,在单位圆上为稳定连续分布。如果我们考虑两个随机变量x1 X_1和x2 {X_2}的APITs的和(差),并检验它们的和(差)模2 π {}{}{}\pi的圆形均匀性,这相当于检验原始变量的独立性。在这项研究中,我们使用了一个灵活的非负三角和(NNTS)圆形分布族,其中包括均匀圆形分布作为该家族的成员,通过从NNTS替代分布中生成样本来评估所提出的独立性检验的能力,这些分布可能更接近于圆形均匀零分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Test of bivariate independence based on angular probability integral transform with emphasis on circular-circular and circular-linear data
Abstract The probability integral transform of a continuous random variable X X with distribution function F X {F}_{X} is a uniformly distributed random variable U = F X ( X ) U={F}_{X}\left(X) . We define the angular probability integral transform (APIT) as θ U = 2 π U = 2 π F X ( X ) {\theta }_{U}=2\pi U=2\pi {F}_{X}\left(X) , which corresponds to a uniformly distributed angle on the unit circle. For circular (angular) random variables, the sum modulus 2 π \pi of absolutely continuous independent circular uniform random variables is a circular uniform random variable, that is, the circular uniform distribution is closed under summation modulus 2 π \pi , and it is a stable continuous distribution on the unit circle. If we consider the sum (difference) of the APITs of two random variables, X 1 {X}_{1} and X 2 {X}_{2} , and test for the circular uniformity of their sum (difference) modulus 2 π \pi , this is equivalent to test of independence of the original variables. In this study, we used a flexible family of nonnegative trigonometric sums (NNTS) circular distributions, which include the uniform circular distribution as a member of the family, to evaluate the power of the proposed independence test by generating samples from NNTS alternative distributions that could be at a closer proximity with respect to the circular uniform null distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Dependence Modeling
Dependence Modeling STATISTICS & PROBABILITY-
CiteScore
1.00
自引率
0.00%
发文量
18
审稿时长
12 weeks
期刊介绍: The journal Dependence Modeling aims at providing a medium for exchanging results and ideas in the area of multivariate dependence modeling. It is an open access fully peer-reviewed journal providing the readers with free, instant, and permanent access to all content worldwide. Dependence Modeling is listed by Web of Science (Emerging Sources Citation Index), Scopus, MathSciNet and Zentralblatt Math. The journal presents different types of articles: -"Research Articles" on fundamental theoretical aspects, as well as on significant applications in science, engineering, economics, finance, insurance and other fields. -"Review Articles" which present the existing literature on the specific topic from new perspectives. -"Interview articles" limited to two papers per year, covering interviews with milestone personalities in the field of Dependence Modeling. The journal topics include (but are not limited to):  -Copula methods -Multivariate distributions -Estimation and goodness-of-fit tests -Measures of association -Quantitative risk management -Risk measures and stochastic orders -Time series -Environmental sciences -Computational methods and software -Extreme-value theory -Limit laws -Mass Transportations
期刊最新文献
Joint lifetime modeling with matrix distributions On copulas with a trapezoid support When copulas and smoothing met: An interview with Irène Gijbels Mutual volatility transmission between assets and trading places Functions operating on several multivariate distribution functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1