利用机器学习模型预测参考蒸散量:来自最小气候数据的实证研究

IF 2 3区 农林科学 Q2 AGRONOMY Agronomy Journal Pub Date : 2023-11-10 DOI:10.1002/agj2.21504
Shaloo, Bipin Kumar, Himani Bisht, Jitendra Rajput, Anil Kumar Mishra, Kiran Kumara TM, Pothula Srinivasa Brahmanand
{"title":"利用机器学习模型预测参考蒸散量:来自最小气候数据的实证研究","authors":"Shaloo,&nbsp;Bipin Kumar,&nbsp;Himani Bisht,&nbsp;Jitendra Rajput,&nbsp;Anil Kumar Mishra,&nbsp;Kiran Kumara TM,&nbsp;Pothula Srinivasa Brahmanand","doi":"10.1002/agj2.21504","DOIUrl":null,"url":null,"abstract":"<p>The scarcity of climatic data is the biggest challenge for developing countries, and the development of models for reference evapotranspiration (ET<sub>0</sub>) estimation with limited datasets is crucial. Therefore, the current investigation assessed the efficacy of four machine learning (ML) models, namely, linear regression (LR), support vector machine (SVM), random forest (RF), and neural networks (NN), to predict ET<sub>0</sub> based on minimal climate data in comparison with the standard FAO-56 Penman-Monteith (PM) method. The data on daily climate parameters were collected for the period 2000−2021, including maximum and minimum temperatures (<i>T</i><sub>max</sub> and <i>T</i><sub>min</sub>), mean relative humidity (<i>R</i><sub>H</sub>), wind speed (<i>W</i><sub>S</sub>), and sunshine hours (<i>S</i><sub>SH</sub>). The performance of the developed models considering different input combinations was evaluated by using several statistical performance measures. The results showed that the SVM model performed better than the other ML models during training (<i>R</i><sup>2</sup> = 0.985; mean absolute error [MAE] = 0.170 mm/day; mean square error [MSE] = 0.052 mm/day; root mean square error [RMSE] = 0.229 mm/day; mean absolute percentage error [MAPE] = 5.72%) and testing stages (<i>R</i><sup>2</sup> = 0.985; MAE = 0.168 mm/day; MSE = 0.050 mm/day; RMSE = 0.224 mm/day; MAPE = 5.91%) under full dataset scenario. The best performance of the models to estimate was with <i>T</i><sub>max</sub>, <i>R</i><sub>H</sub>, <i>W</i><sub>s</sub>, <i>S</i><sub>SH</sub>, and <i>T</i><sub>min</sub>. The results of the current study are substantial as it offers an approach to estimate ET<sub>0</sub> in semi-arid data-scarce region.</p>","PeriodicalId":7522,"journal":{"name":"Agronomy Journal","volume":"116 3","pages":"956-972"},"PeriodicalIF":2.0000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reference evapotranspiration prediction using machine learning models: An empirical study from minimal climate data\",\"authors\":\"Shaloo,&nbsp;Bipin Kumar,&nbsp;Himani Bisht,&nbsp;Jitendra Rajput,&nbsp;Anil Kumar Mishra,&nbsp;Kiran Kumara TM,&nbsp;Pothula Srinivasa Brahmanand\",\"doi\":\"10.1002/agj2.21504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The scarcity of climatic data is the biggest challenge for developing countries, and the development of models for reference evapotranspiration (ET<sub>0</sub>) estimation with limited datasets is crucial. Therefore, the current investigation assessed the efficacy of four machine learning (ML) models, namely, linear regression (LR), support vector machine (SVM), random forest (RF), and neural networks (NN), to predict ET<sub>0</sub> based on minimal climate data in comparison with the standard FAO-56 Penman-Monteith (PM) method. The data on daily climate parameters were collected for the period 2000−2021, including maximum and minimum temperatures (<i>T</i><sub>max</sub> and <i>T</i><sub>min</sub>), mean relative humidity (<i>R</i><sub>H</sub>), wind speed (<i>W</i><sub>S</sub>), and sunshine hours (<i>S</i><sub>SH</sub>). The performance of the developed models considering different input combinations was evaluated by using several statistical performance measures. The results showed that the SVM model performed better than the other ML models during training (<i>R</i><sup>2</sup> = 0.985; mean absolute error [MAE] = 0.170 mm/day; mean square error [MSE] = 0.052 mm/day; root mean square error [RMSE] = 0.229 mm/day; mean absolute percentage error [MAPE] = 5.72%) and testing stages (<i>R</i><sup>2</sup> = 0.985; MAE = 0.168 mm/day; MSE = 0.050 mm/day; RMSE = 0.224 mm/day; MAPE = 5.91%) under full dataset scenario. The best performance of the models to estimate was with <i>T</i><sub>max</sub>, <i>R</i><sub>H</sub>, <i>W</i><sub>s</sub>, <i>S</i><sub>SH</sub>, and <i>T</i><sub>min</sub>. The results of the current study are substantial as it offers an approach to estimate ET<sub>0</sub> in semi-arid data-scarce region.</p>\",\"PeriodicalId\":7522,\"journal\":{\"name\":\"Agronomy Journal\",\"volume\":\"116 3\",\"pages\":\"956-972\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agronomy Journal\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/agj2.21504\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agronomy Journal","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/agj2.21504","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

气候数据的匮乏是发展中国家面临的最大挑战,因此,利用有限的数据集开发参考蒸散(ET0)估算模型至关重要。因此,本次调查评估了四种机器学习(ML)模型,即线性回归(LR)、支持向量机(SVM)、随机森林(RF)和神经网络(NN),与标准的 FAO-56 Penman-Monteith (PM)方法相比,在最小气候数据的基础上预测 ET0 的效果。收集了 2000-2021 年期间的日气候参数数据,包括最高和最低气温(Tmax 和 Tmin)、平均相对湿度(RH)、风速(WS)和日照时数(SSH)。采用多种统计性能指标对所开发模型的性能进行了评估,考虑了不同的输入组合。结果表明,SVM 模型在训练过程中的表现优于其他 ML 模型(R2 = 0.985;平均绝对误差 [MAE] = 0.170 毫米/天;均方误差 [MSE] = 0.052 毫米/天;均方根误差 [RMSE] = 0.229 毫米/天;平均绝对百分比误差 [MAPE] = 5.72%)和测试阶段(R2 = 0.985;MAE = 0.168 毫米/天;MSE = 0.050 毫米/天;RMSE = 0.224 毫米/天;MAPE = 5.91%)。各模型中,Tmax、RH、Ws、SSH 和 Tmin 的估算效果最好。本次研究的结果非常重要,因为它提供了一种在数据稀缺的半干旱地区估算 ET0 的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reference evapotranspiration prediction using machine learning models: An empirical study from minimal climate data

The scarcity of climatic data is the biggest challenge for developing countries, and the development of models for reference evapotranspiration (ET0) estimation with limited datasets is crucial. Therefore, the current investigation assessed the efficacy of four machine learning (ML) models, namely, linear regression (LR), support vector machine (SVM), random forest (RF), and neural networks (NN), to predict ET0 based on minimal climate data in comparison with the standard FAO-56 Penman-Monteith (PM) method. The data on daily climate parameters were collected for the period 2000−2021, including maximum and minimum temperatures (Tmax and Tmin), mean relative humidity (RH), wind speed (WS), and sunshine hours (SSH). The performance of the developed models considering different input combinations was evaluated by using several statistical performance measures. The results showed that the SVM model performed better than the other ML models during training (R2 = 0.985; mean absolute error [MAE] = 0.170 mm/day; mean square error [MSE] = 0.052 mm/day; root mean square error [RMSE] = 0.229 mm/day; mean absolute percentage error [MAPE] = 5.72%) and testing stages (R2 = 0.985; MAE = 0.168 mm/day; MSE = 0.050 mm/day; RMSE = 0.224 mm/day; MAPE = 5.91%) under full dataset scenario. The best performance of the models to estimate was with Tmax, RH, Ws, SSH, and Tmin. The results of the current study are substantial as it offers an approach to estimate ET0 in semi-arid data-scarce region.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Agronomy Journal
Agronomy Journal 农林科学-农艺学
CiteScore
4.70
自引率
9.50%
发文量
265
审稿时长
4.8 months
期刊介绍: After critical review and approval by the editorial board, AJ publishes articles reporting research findings in soil–plant relationships; crop science; soil science; biometry; crop, soil, pasture, and range management; crop, forage, and pasture production and utilization; turfgrass; agroclimatology; agronomic models; integrated pest management; integrated agricultural systems; and various aspects of entomology, weed science, animal science, plant pathology, and agricultural economics as applied to production agriculture. Notes are published about apparatus, observations, and experimental techniques. Observations usually are limited to studies and reports of unrepeatable phenomena or other unique circumstances. Review and interpretation papers are also published, subject to standard review. Contributions to the Forum section deal with current agronomic issues and questions in brief, thought-provoking form. Such papers are reviewed by the editor in consultation with the editorial board.
期刊最新文献
Issue Information Weed management in organic dryland wheat production in the Pacific Northwest Soil health benefits of compost persist two decades after single application to winter wheat Deriving general principles of agroecosystem multifunctionality with the Diverse Rotations Improve Valuable Ecosystem Services (DRIVES) network Multiyear productivity and nitrate-nitrogen loss from corn and prairie bioenergy cropping systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1