T. X. Liu, C. A. Guo, F. S. Lu, X. Y. Zhang, L. Zhang, Z. J. Wang, Z. Y. Xu, G. L. Zhu
{"title":"沉积电压对电火花沉积W-WS2涂层摩擦学性能的影响","authors":"T. X. Liu, C. A. Guo, F. S. Lu, X. Y. Zhang, L. Zhang, Z. J. Wang, Z. Y. Xu, G. L. Zhu","doi":"10.15251/cl.2023.2010.741","DOIUrl":null,"url":null,"abstract":"Electrospark deposition coatings were prepared with different deposition voltage on CrNi3MoVA steel substrates by using a W-WS2 sintered electrode and their tribological properties were investigated. The microhardness, roughness and tribological properties of the coatings were tested by using Vickers hardness tester, confocal laser scanning microscope and tribometer, and the morphologies, composition and phase structure were obtained by utilizing scanning electron microscopy (SEM), energy dispersive X-ray spectrum (EDS) and X-ray diffraction(XRD). The results showed that with the increase of deposition voltage, the hardness and roughness of the coatings increase. The coatings remarkably increase the tribological properties of CrNi3MoVA steel, and among the three coatings deposited at 40 V, 60 V and 80 V, the coating deposited at 60 V has the smallest friction coefficient and the best wear resistance.","PeriodicalId":9710,"journal":{"name":"Chalcogenide Letters","volume":"61 6","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of deposition voltage on tribological properties of W-WS2 coatings deposited by electrospark deposition\",\"authors\":\"T. X. Liu, C. A. Guo, F. S. Lu, X. Y. Zhang, L. Zhang, Z. J. Wang, Z. Y. Xu, G. L. Zhu\",\"doi\":\"10.15251/cl.2023.2010.741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrospark deposition coatings were prepared with different deposition voltage on CrNi3MoVA steel substrates by using a W-WS2 sintered electrode and their tribological properties were investigated. The microhardness, roughness and tribological properties of the coatings were tested by using Vickers hardness tester, confocal laser scanning microscope and tribometer, and the morphologies, composition and phase structure were obtained by utilizing scanning electron microscopy (SEM), energy dispersive X-ray spectrum (EDS) and X-ray diffraction(XRD). The results showed that with the increase of deposition voltage, the hardness and roughness of the coatings increase. The coatings remarkably increase the tribological properties of CrNi3MoVA steel, and among the three coatings deposited at 40 V, 60 V and 80 V, the coating deposited at 60 V has the smallest friction coefficient and the best wear resistance.\",\"PeriodicalId\":9710,\"journal\":{\"name\":\"Chalcogenide Letters\",\"volume\":\"61 6\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chalcogenide Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15251/cl.2023.2010.741\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chalcogenide Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15251/cl.2023.2010.741","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Influence of deposition voltage on tribological properties of W-WS2 coatings deposited by electrospark deposition
Electrospark deposition coatings were prepared with different deposition voltage on CrNi3MoVA steel substrates by using a W-WS2 sintered electrode and their tribological properties were investigated. The microhardness, roughness and tribological properties of the coatings were tested by using Vickers hardness tester, confocal laser scanning microscope and tribometer, and the morphologies, composition and phase structure were obtained by utilizing scanning electron microscopy (SEM), energy dispersive X-ray spectrum (EDS) and X-ray diffraction(XRD). The results showed that with the increase of deposition voltage, the hardness and roughness of the coatings increase. The coatings remarkably increase the tribological properties of CrNi3MoVA steel, and among the three coatings deposited at 40 V, 60 V and 80 V, the coating deposited at 60 V has the smallest friction coefficient and the best wear resistance.
期刊介绍:
Chalcogenide Letters (CHL) has the aim to publish rapidly papers in chalcogenide field of research and
appears with twelve issues per year. The journal is open to letters, short communications and breakings news
inserted as Short Notes, in the field of chalcogenide materials either amorphous or crystalline. Short papers in
structure, properties and applications, as well as those covering special properties in nano-structured
chalcogenides are admitted.