{"title":"联邦学习中软件定义网络的QoS指标优化","authors":"Mahdi Fallah, Parya Mohammadi, Mohammadreza NasiriFard, Pedram Salehpour","doi":"10.1155/2023/3896267","DOIUrl":null,"url":null,"abstract":"In the modern and complex realm of networking, the pursuit of ideal QoS metrics is a fundamental objective aimed at maximizing network efficiency and user experiences. Nonetheless, the accomplishment of this task is hindered by the diversity of networks, the unpredictability of network conditions, and the rapid growth of multimedia traffic. This manuscript presents an innovative method for enhancing the QoS in SDN by combining the load-balancing capabilities of FL and genetic algorithms. The proposed solution aims to improve the dispersed aggregation of multimedia traffic by prioritizing data privacy and ensuring secure network load distribution. By using federated learning, multiple clients can collectively participate in the training process of a global model without compromising the privacy of their sensitive information. This method safeguards user privacy while facilitating the aggregation of distributed multimedia traffic. In addition, genetic algorithms are used to optimize network load balancing, thereby ensuring the efficient use of network resources and mitigating the risk of individual node overload. As a result of extensive testing, this research has demonstrated significant improvements in QoS measurements compared to traditional methods. Our proposed technique outperforms existing techniques such as RR, weighted RR, server load, LBBSRT, and dynamic server approaches in terms of CPU and memory utilization, as well as server requests across three testing servers. This novel methodology has applications in multiple industries, including telecommunications, multimedia streaming, and cloud computing. The proposed method presents an innovative strategy for addressing the optimization of QoS metrics in SDN environments, while preserving data privacy and optimizing network resource usage.","PeriodicalId":49802,"journal":{"name":"Mobile Information Systems","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing QoS Metrics for Software-Defined Networking in Federated Learning\",\"authors\":\"Mahdi Fallah, Parya Mohammadi, Mohammadreza NasiriFard, Pedram Salehpour\",\"doi\":\"10.1155/2023/3896267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the modern and complex realm of networking, the pursuit of ideal QoS metrics is a fundamental objective aimed at maximizing network efficiency and user experiences. Nonetheless, the accomplishment of this task is hindered by the diversity of networks, the unpredictability of network conditions, and the rapid growth of multimedia traffic. This manuscript presents an innovative method for enhancing the QoS in SDN by combining the load-balancing capabilities of FL and genetic algorithms. The proposed solution aims to improve the dispersed aggregation of multimedia traffic by prioritizing data privacy and ensuring secure network load distribution. By using federated learning, multiple clients can collectively participate in the training process of a global model without compromising the privacy of their sensitive information. This method safeguards user privacy while facilitating the aggregation of distributed multimedia traffic. In addition, genetic algorithms are used to optimize network load balancing, thereby ensuring the efficient use of network resources and mitigating the risk of individual node overload. As a result of extensive testing, this research has demonstrated significant improvements in QoS measurements compared to traditional methods. Our proposed technique outperforms existing techniques such as RR, weighted RR, server load, LBBSRT, and dynamic server approaches in terms of CPU and memory utilization, as well as server requests across three testing servers. This novel methodology has applications in multiple industries, including telecommunications, multimedia streaming, and cloud computing. The proposed method presents an innovative strategy for addressing the optimization of QoS metrics in SDN environments, while preserving data privacy and optimizing network resource usage.\",\"PeriodicalId\":49802,\"journal\":{\"name\":\"Mobile Information Systems\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mobile Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/3896267\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mobile Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/3896267","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
Optimizing QoS Metrics for Software-Defined Networking in Federated Learning
In the modern and complex realm of networking, the pursuit of ideal QoS metrics is a fundamental objective aimed at maximizing network efficiency and user experiences. Nonetheless, the accomplishment of this task is hindered by the diversity of networks, the unpredictability of network conditions, and the rapid growth of multimedia traffic. This manuscript presents an innovative method for enhancing the QoS in SDN by combining the load-balancing capabilities of FL and genetic algorithms. The proposed solution aims to improve the dispersed aggregation of multimedia traffic by prioritizing data privacy and ensuring secure network load distribution. By using federated learning, multiple clients can collectively participate in the training process of a global model without compromising the privacy of their sensitive information. This method safeguards user privacy while facilitating the aggregation of distributed multimedia traffic. In addition, genetic algorithms are used to optimize network load balancing, thereby ensuring the efficient use of network resources and mitigating the risk of individual node overload. As a result of extensive testing, this research has demonstrated significant improvements in QoS measurements compared to traditional methods. Our proposed technique outperforms existing techniques such as RR, weighted RR, server load, LBBSRT, and dynamic server approaches in terms of CPU and memory utilization, as well as server requests across three testing servers. This novel methodology has applications in multiple industries, including telecommunications, multimedia streaming, and cloud computing. The proposed method presents an innovative strategy for addressing the optimization of QoS metrics in SDN environments, while preserving data privacy and optimizing network resource usage.
期刊介绍:
Mobile Information Systems is a peer-reviewed, open access journal that publishes original research articles as well as review articles related to all aspects of mobile information systems.