矩阵模型的谱反褶积:加性情况

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-09-18 DOI:10.1093/imaiai/iaad037
Pierre Tarrago
{"title":"矩阵模型的谱反褶积:加性情况","authors":"Pierre Tarrago","doi":"10.1093/imaiai/iaad037","DOIUrl":null,"url":null,"abstract":"Abstract We implement a complex analytic method to build an estimator of the spectrum of a matrix perturbed by the addition of a random matrix noise in the free probabilistic regime. This method, which has been previously introduced by Arizmendi, Tarrago and Vargas, involves two steps: the first step consists in a fixed point method to compute the Stieltjes transform of the desired distribution in a certain domain, and the second step is a classical deconvolution by a Cauchy distribution, whose parameter depends on the intensity of the noise. This method thus reduces the spectral deconvolution problem to a classical one. We provide explicit bounds for the mean squared error of the first step under the assumption that the distribution of the noise is unitary invariant. In the case where the unknown measure is sparse or close to a distribution with a density with enough smoothness, we prove that the resulting estimator converges to the measure in the $1$-Wasserstein distance at speed $O(1/\\sqrt{N})$, where $N$ is the dimension of the matrix.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral deconvolution of matrix models: the additive case\",\"authors\":\"Pierre Tarrago\",\"doi\":\"10.1093/imaiai/iaad037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We implement a complex analytic method to build an estimator of the spectrum of a matrix perturbed by the addition of a random matrix noise in the free probabilistic regime. This method, which has been previously introduced by Arizmendi, Tarrago and Vargas, involves two steps: the first step consists in a fixed point method to compute the Stieltjes transform of the desired distribution in a certain domain, and the second step is a classical deconvolution by a Cauchy distribution, whose parameter depends on the intensity of the noise. This method thus reduces the spectral deconvolution problem to a classical one. We provide explicit bounds for the mean squared error of the first step under the assumption that the distribution of the noise is unitary invariant. In the case where the unknown measure is sparse or close to a distribution with a density with enough smoothness, we prove that the resulting estimator converges to the measure in the $1$-Wasserstein distance at speed $O(1/\\\\sqrt{N})$, where $N$ is the dimension of the matrix.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/imaiai/iaad037\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/imaiai/iaad037","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要利用复解析的方法,建立了在自由概率域中被随机矩阵噪声扰动的矩阵谱的估计量。该方法由Arizmendi、Tarrago和Vargas提出,分为两步:第一步采用不动点法计算期望分布在某一区域的Stieltjes变换,第二步采用柯西分布进行经典反卷积,柯西分布的参数取决于噪声的强度。该方法将光谱反褶积问题简化为经典问题。在假设噪声的分布是酉不变的情况下,我们为第一步的均方误差提供了明确的界限。在未知测度是稀疏的或接近一个密度足够光滑的分布的情况下,我们证明了所得估计量以速度$O(1/\sqrt{N})$收敛于$1$-Wasserstein距离上的测度,其中$N$是矩阵的维数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spectral deconvolution of matrix models: the additive case
Abstract We implement a complex analytic method to build an estimator of the spectrum of a matrix perturbed by the addition of a random matrix noise in the free probabilistic regime. This method, which has been previously introduced by Arizmendi, Tarrago and Vargas, involves two steps: the first step consists in a fixed point method to compute the Stieltjes transform of the desired distribution in a certain domain, and the second step is a classical deconvolution by a Cauchy distribution, whose parameter depends on the intensity of the noise. This method thus reduces the spectral deconvolution problem to a classical one. We provide explicit bounds for the mean squared error of the first step under the assumption that the distribution of the noise is unitary invariant. In the case where the unknown measure is sparse or close to a distribution with a density with enough smoothness, we prove that the resulting estimator converges to the measure in the $1$-Wasserstein distance at speed $O(1/\sqrt{N})$, where $N$ is the dimension of the matrix.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1