{"title":"新型活性席夫碱配体钯(II)和铂(II)配合物的合成、光谱表征和生物活性","authors":"Jaswant Raj, Akshita Jain, Naveen Sharma, Anita Kumari, Nighat Fahmi","doi":"10.4314/bcse.v37i6.7","DOIUrl":null,"url":null,"abstract":"ABSTRACT. A new series of palladium(II) and platinum(II) Schiff base complexes have been synthesized by the interaction of ligands N-(2-fluoro benzylidene)isonicotinohydrazone (L1H) and N-(2-fluorophenylethanone) isonicotinohydrazone (L2H) with PdCl2 and PtCl2. Elemental investigations, melting point determinations, molecular weight determinations, IR, 1H NMR, and UV-Visible spectral studies were used to describe the structure and bonding pattern of ligands and their metal complexes. These analyses revealed that the ligands coordinate with the metal ions in a monobasic bidentate manner and that the complexes have a square planar geometry. The antimicrobial activities of both the ligands and their palladium(II) and platinum(II) complexes have been tested against various bacterial and fungal strains and showed considerable antifungal and antibacterial characteristics. The in vitro cytotoxic activity of [Pt(L2H)]Cl2 complex was assessed by examining its potential to inhibit cell proliferation against the human HeLa cell line(cervical cancer cell line) using MTT assay and the antioxidant activity of [Pt(L1H)2]Cl2 compound was performed against DPPH. The results showed a dose-dependent cytotoxic and radical scavenging activity thus pointing towards the biological significance of Pt(II) complexes.
 KEY WORDS: Schiff base ligands, Antimicrobial activity, Scavenging activity, Cytotoxic
 Bull. Chem. Soc. Ethiop. 2023, 37(6), 1383-1396. DOI: https://dx.doi.org/10.4314/bcse.v37i6.7","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis, spectral characterization, and biological activities of novel palladium(II) and platinum(II) complexes of active Schiff base ligands\",\"authors\":\"Jaswant Raj, Akshita Jain, Naveen Sharma, Anita Kumari, Nighat Fahmi\",\"doi\":\"10.4314/bcse.v37i6.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT. A new series of palladium(II) and platinum(II) Schiff base complexes have been synthesized by the interaction of ligands N-(2-fluoro benzylidene)isonicotinohydrazone (L1H) and N-(2-fluorophenylethanone) isonicotinohydrazone (L2H) with PdCl2 and PtCl2. Elemental investigations, melting point determinations, molecular weight determinations, IR, 1H NMR, and UV-Visible spectral studies were used to describe the structure and bonding pattern of ligands and their metal complexes. These analyses revealed that the ligands coordinate with the metal ions in a monobasic bidentate manner and that the complexes have a square planar geometry. The antimicrobial activities of both the ligands and their palladium(II) and platinum(II) complexes have been tested against various bacterial and fungal strains and showed considerable antifungal and antibacterial characteristics. The in vitro cytotoxic activity of [Pt(L2H)]Cl2 complex was assessed by examining its potential to inhibit cell proliferation against the human HeLa cell line(cervical cancer cell line) using MTT assay and the antioxidant activity of [Pt(L1H)2]Cl2 compound was performed against DPPH. The results showed a dose-dependent cytotoxic and radical scavenging activity thus pointing towards the biological significance of Pt(II) complexes.
 KEY WORDS: Schiff base ligands, Antimicrobial activity, Scavenging activity, Cytotoxic
 Bull. Chem. Soc. Ethiop. 2023, 37(6), 1383-1396. DOI: https://dx.doi.org/10.4314/bcse.v37i6.7\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4314/bcse.v37i6.7\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/bcse.v37i6.7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Synthesis, spectral characterization, and biological activities of novel palladium(II) and platinum(II) complexes of active Schiff base ligands
ABSTRACT. A new series of palladium(II) and platinum(II) Schiff base complexes have been synthesized by the interaction of ligands N-(2-fluoro benzylidene)isonicotinohydrazone (L1H) and N-(2-fluorophenylethanone) isonicotinohydrazone (L2H) with PdCl2 and PtCl2. Elemental investigations, melting point determinations, molecular weight determinations, IR, 1H NMR, and UV-Visible spectral studies were used to describe the structure and bonding pattern of ligands and their metal complexes. These analyses revealed that the ligands coordinate with the metal ions in a monobasic bidentate manner and that the complexes have a square planar geometry. The antimicrobial activities of both the ligands and their palladium(II) and platinum(II) complexes have been tested against various bacterial and fungal strains and showed considerable antifungal and antibacterial characteristics. The in vitro cytotoxic activity of [Pt(L2H)]Cl2 complex was assessed by examining its potential to inhibit cell proliferation against the human HeLa cell line(cervical cancer cell line) using MTT assay and the antioxidant activity of [Pt(L1H)2]Cl2 compound was performed against DPPH. The results showed a dose-dependent cytotoxic and radical scavenging activity thus pointing towards the biological significance of Pt(II) complexes.
KEY WORDS: Schiff base ligands, Antimicrobial activity, Scavenging activity, Cytotoxic
Bull. Chem. Soc. Ethiop. 2023, 37(6), 1383-1396. DOI: https://dx.doi.org/10.4314/bcse.v37i6.7
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.