Xuan Huang, Gina Reye, Konstantin I. Momot, Tony Blick, Thomas Lloyd, Wayne D. Tilley, Theresa E. Hickey, Cameron E. Snell, Erik W. Thompson, Honor J. Hugo
{"title":"便携式核磁共振的研究模型乳房x光密度离体:雄激素拮抗雌激素的促进作用","authors":"Xuan Huang, Gina Reye, Konstantin I. Momot, Tony Blick, Thomas Lloyd, Wayne D. Tilley, Theresa E. Hickey, Cameron E. Snell, Erik W. Thompson, Honor J. Hugo","doi":"10.3233/bsi-230000","DOIUrl":null,"url":null,"abstract":"Background: Increased mammographic density (MD) is a strong and independent risk factor for breast cancer. Lifetime oestrogenic exposure is associated with increased MD, however androgenic effects on MD have not been widely investigated. Methods: We studied the effect of 17 β-oestradiol (E2) alone or in combination with an androgen receptor (AR) agonist ( 5 α-dihydrotestosterone [DHT]) or a selective AR modulator (Enobosarm), in modulating MD as measured via single-sided Portable NMR in a patient-derived explant (PDE) model of normal human mammary tissue. Results: We observed an upward trend in explants treated with E2 alone in 3/6 cases, an effect which appeared to be somewhat influenced by menopausal status. Co-treatment of E2 with the AR agonists DHT or Enobosarm however effected a downward trend in regards to MD. E2 significantly upregulated the ER regulated genes (ERGs) CELSR2 and AR, and the AR regulated genes SEC14L2 and GRPC5A, whereas E2 in combination with AR agonist Enobosarm downregulated ERGs SERPINA3, ATP6V1B1, TFF1 and PR regulated gene RANK. Only GREB1 and CLIC6 were upregulated by E2 and downregulated by the combination of E2 with Enobosarm. DHT + E2 exhibited no significant difference in expression of ER, AR or PR genes examined, compared with the effect of E2 alone. A negative trend was observed between ER protein levels and MD increase in PDEs. Since ER protein gets degraded upon hormone activation, this observation supports active ER signalling in the promotion of MD. Conclusions: Collectively, these findings supports the utility of single-sided Portable NMR for the measurement of MD in explanted human mammary tissue to detect MD change in response to exogenous hormone treatments. A mechanism through which activation of AR may reduce MD as a potential mechanism for reducing breast cancer risk associated to high MD is discussed.","PeriodicalId":44239,"journal":{"name":"Biomedical Spectroscopy and Imaging","volume":"119 15","pages":"0"},"PeriodicalIF":0.3000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Portable NMR for the investigation of models of mammographic density ex vivo: Androgens antagonise the promotional effect of oestrogen\",\"authors\":\"Xuan Huang, Gina Reye, Konstantin I. Momot, Tony Blick, Thomas Lloyd, Wayne D. Tilley, Theresa E. Hickey, Cameron E. Snell, Erik W. Thompson, Honor J. Hugo\",\"doi\":\"10.3233/bsi-230000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Increased mammographic density (MD) is a strong and independent risk factor for breast cancer. Lifetime oestrogenic exposure is associated with increased MD, however androgenic effects on MD have not been widely investigated. Methods: We studied the effect of 17 β-oestradiol (E2) alone or in combination with an androgen receptor (AR) agonist ( 5 α-dihydrotestosterone [DHT]) or a selective AR modulator (Enobosarm), in modulating MD as measured via single-sided Portable NMR in a patient-derived explant (PDE) model of normal human mammary tissue. Results: We observed an upward trend in explants treated with E2 alone in 3/6 cases, an effect which appeared to be somewhat influenced by menopausal status. Co-treatment of E2 with the AR agonists DHT or Enobosarm however effected a downward trend in regards to MD. E2 significantly upregulated the ER regulated genes (ERGs) CELSR2 and AR, and the AR regulated genes SEC14L2 and GRPC5A, whereas E2 in combination with AR agonist Enobosarm downregulated ERGs SERPINA3, ATP6V1B1, TFF1 and PR regulated gene RANK. Only GREB1 and CLIC6 were upregulated by E2 and downregulated by the combination of E2 with Enobosarm. DHT + E2 exhibited no significant difference in expression of ER, AR or PR genes examined, compared with the effect of E2 alone. A negative trend was observed between ER protein levels and MD increase in PDEs. Since ER protein gets degraded upon hormone activation, this observation supports active ER signalling in the promotion of MD. Conclusions: Collectively, these findings supports the utility of single-sided Portable NMR for the measurement of MD in explanted human mammary tissue to detect MD change in response to exogenous hormone treatments. A mechanism through which activation of AR may reduce MD as a potential mechanism for reducing breast cancer risk associated to high MD is discussed.\",\"PeriodicalId\":44239,\"journal\":{\"name\":\"Biomedical Spectroscopy and Imaging\",\"volume\":\"119 15\",\"pages\":\"0\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Spectroscopy and Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/bsi-230000\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Spectroscopy and Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/bsi-230000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
Portable NMR for the investigation of models of mammographic density ex vivo: Androgens antagonise the promotional effect of oestrogen
Background: Increased mammographic density (MD) is a strong and independent risk factor for breast cancer. Lifetime oestrogenic exposure is associated with increased MD, however androgenic effects on MD have not been widely investigated. Methods: We studied the effect of 17 β-oestradiol (E2) alone or in combination with an androgen receptor (AR) agonist ( 5 α-dihydrotestosterone [DHT]) or a selective AR modulator (Enobosarm), in modulating MD as measured via single-sided Portable NMR in a patient-derived explant (PDE) model of normal human mammary tissue. Results: We observed an upward trend in explants treated with E2 alone in 3/6 cases, an effect which appeared to be somewhat influenced by menopausal status. Co-treatment of E2 with the AR agonists DHT or Enobosarm however effected a downward trend in regards to MD. E2 significantly upregulated the ER regulated genes (ERGs) CELSR2 and AR, and the AR regulated genes SEC14L2 and GRPC5A, whereas E2 in combination with AR agonist Enobosarm downregulated ERGs SERPINA3, ATP6V1B1, TFF1 and PR regulated gene RANK. Only GREB1 and CLIC6 were upregulated by E2 and downregulated by the combination of E2 with Enobosarm. DHT + E2 exhibited no significant difference in expression of ER, AR or PR genes examined, compared with the effect of E2 alone. A negative trend was observed between ER protein levels and MD increase in PDEs. Since ER protein gets degraded upon hormone activation, this observation supports active ER signalling in the promotion of MD. Conclusions: Collectively, these findings supports the utility of single-sided Portable NMR for the measurement of MD in explanted human mammary tissue to detect MD change in response to exogenous hormone treatments. A mechanism through which activation of AR may reduce MD as a potential mechanism for reducing breast cancer risk associated to high MD is discussed.
期刊介绍:
Biomedical Spectroscopy and Imaging (BSI) is a multidisciplinary journal devoted to the timely publication of basic and applied research that uses spectroscopic and imaging techniques in different areas of life science including biology, biochemistry, biotechnology, bionanotechnology, environmental science, food science, pharmaceutical science, physiology and medicine. Scientists are encouraged to submit their work for publication in the form of original articles, brief communications, rapid communications, reviews and mini-reviews. Techniques covered include, but are not limited, to the following: • Vibrational Spectroscopy (Infrared, Raman, Teraherz) • Circular Dichroism Spectroscopy • Magnetic Resonance Spectroscopy (NMR, ESR) • UV-vis Spectroscopy • Mössbauer Spectroscopy • X-ray Spectroscopy (Absorption, Emission, Photoelectron, Fluorescence) • Neutron Spectroscopy • Mass Spectroscopy • Fluorescence Spectroscopy • X-ray and Neutron Scattering • Differential Scanning Calorimetry • Atomic Force Microscopy • Surface Plasmon Resonance • Magnetic Resonance Imaging • X-ray Imaging • Electron Imaging • Neutron Imaging • Raman Imaging • Infrared Imaging • Terahertz Imaging • Fluorescence Imaging • Near-infrared spectroscopy.