{"title":"汽车零部件用镁合金线切割加工的研究","authors":"Manikandan Natarajan, Thejasree Pasupuleti, Palanisamy D, V Kumar, Jothi Kiruthika, Vamsinath Polanki","doi":"10.4271/2023-28-0155","DOIUrl":null,"url":null,"abstract":"<div class=\"section abstract\"><div class=\"htmlview paragraph\">Magnesium alloy, known for its high strength and lightweight properties, finds widespread utilization in various technical applications. Aerospace applications, such as fuselages and steering columns, are well-suited for their utilization. These materials are frequently employed in automotive components, such as steering wheels and fuel tank lids, due to their notable corrosion resistance. The performance of magnesium alloy components remains unimproved by normal manufacturing methods due to the inherent characteristics of the material. This work introduces a contemporary approach to fabricating complex geometries through the utilization of Wire-Electro Discharge Machining (WEDM). The material utilized in this study was magnesium alloy. The investigation also considered the input parameters associated with the Wire Electrical Discharge Machining (WEDM) process, specifically the pulse duration and peak current. The findings of the study encompassed the material removal rate and surface roughness. Taguchi successfully employed a single aspect optimization technique to ascertain the ideal combination that would enhance the efficacy of the WEDM process. The findings of the investigation revealed that the proposed technique significantly improved the efficiency of the WEDM approach.</div></div>","PeriodicalId":38377,"journal":{"name":"SAE Technical Papers","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigations on Wire Electrical Discharge Machining of Magnesium Alloy for Automobile Parts\",\"authors\":\"Manikandan Natarajan, Thejasree Pasupuleti, Palanisamy D, V Kumar, Jothi Kiruthika, Vamsinath Polanki\",\"doi\":\"10.4271/2023-28-0155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div class=\\\"section abstract\\\"><div class=\\\"htmlview paragraph\\\">Magnesium alloy, known for its high strength and lightweight properties, finds widespread utilization in various technical applications. Aerospace applications, such as fuselages and steering columns, are well-suited for their utilization. These materials are frequently employed in automotive components, such as steering wheels and fuel tank lids, due to their notable corrosion resistance. The performance of magnesium alloy components remains unimproved by normal manufacturing methods due to the inherent characteristics of the material. This work introduces a contemporary approach to fabricating complex geometries through the utilization of Wire-Electro Discharge Machining (WEDM). The material utilized in this study was magnesium alloy. The investigation also considered the input parameters associated with the Wire Electrical Discharge Machining (WEDM) process, specifically the pulse duration and peak current. The findings of the study encompassed the material removal rate and surface roughness. Taguchi successfully employed a single aspect optimization technique to ascertain the ideal combination that would enhance the efficacy of the WEDM process. The findings of the investigation revealed that the proposed technique significantly improved the efficiency of the WEDM approach.</div></div>\",\"PeriodicalId\":38377,\"journal\":{\"name\":\"SAE Technical Papers\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SAE Technical Papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4271/2023-28-0155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAE Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4271/2023-28-0155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Investigations on Wire Electrical Discharge Machining of Magnesium Alloy for Automobile Parts
Magnesium alloy, known for its high strength and lightweight properties, finds widespread utilization in various technical applications. Aerospace applications, such as fuselages and steering columns, are well-suited for their utilization. These materials are frequently employed in automotive components, such as steering wheels and fuel tank lids, due to their notable corrosion resistance. The performance of magnesium alloy components remains unimproved by normal manufacturing methods due to the inherent characteristics of the material. This work introduces a contemporary approach to fabricating complex geometries through the utilization of Wire-Electro Discharge Machining (WEDM). The material utilized in this study was magnesium alloy. The investigation also considered the input parameters associated with the Wire Electrical Discharge Machining (WEDM) process, specifically the pulse duration and peak current. The findings of the study encompassed the material removal rate and surface roughness. Taguchi successfully employed a single aspect optimization technique to ascertain the ideal combination that would enhance the efficacy of the WEDM process. The findings of the investigation revealed that the proposed technique significantly improved the efficiency of the WEDM approach.
期刊介绍:
SAE Technical Papers are written and peer-reviewed by experts in the automotive, aerospace, and commercial vehicle industries. Browse the more than 102,000 technical papers and journal articles on the latest advances in technical research and applied technical engineering information below.