多酚诱导羟基磷灰石涂层调节镁合金的耐腐蚀性和生物相容性

IF 1.6 Q4 ENGINEERING, BIOMEDICAL Biosurface and Biotribology Pub Date : 2023-10-09 DOI:10.1049/bsb2.12065
Tao Chai, Hao Zhang, Xiaolong Shen, Haibo Wang, Xingping Fan, Binbin Wang, Dingying He, Jia Su
{"title":"多酚诱导羟基磷灰石涂层调节镁合金的耐腐蚀性和生物相容性","authors":"Tao Chai, Hao Zhang, Xiaolong Shen, Haibo Wang, Xingping Fan, Binbin Wang, Dingying He, Jia Su","doi":"10.1049/bsb2.12065","DOIUrl":null,"url":null,"abstract":"Abstract In order to solve the problem of excessive degradation rate and insufficient biocompatibility of magnesium‐based bone implants, a polyphenol (EGCG) induced hydroxyapatite (HA) coating was prepared on the surface of AZ31 alloy. The physical and chemical properties and corrosion resistance of the coating were analysed in depth, and its biocompatibility was preliminarily explored in vitro. The results showed that the polyphenol (EGCG) conversion coating constructed on the AZ31 could successfully induce the formation of HA by complexing the phenolic hydroxyl group with calcium ions. The electrochemical and long‐term immersion experiments showed that the corrosion resistance of EGCG/HA composite coating was significantly improved. The self‐corrosion current density, hydrogen evolution and the increase of pH value of AZ31‐EGCG/HA were significantly lower than those of AZ31. On the basis of inhibiting the excessive corrosion of the substrate, the composite coating significantly improves the compatibility of pre‐osteoblasts, supports the adhesion and spreading and effectively reduces the haemolysis rate to less than 5%. The preparation method of the coating is simple, low cost and suitable for complex shape surfaces, which can significantly improve the corrosion resistance and biocompatibility of the AZ31 substrate. It is expected to provide a solution for the surface modification of magnesium‐based bone implants.","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A polyphenol‐induced hydroxyapatite coating modulates corrosion resistance and biocompatibility of magnesium alloys\",\"authors\":\"Tao Chai, Hao Zhang, Xiaolong Shen, Haibo Wang, Xingping Fan, Binbin Wang, Dingying He, Jia Su\",\"doi\":\"10.1049/bsb2.12065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In order to solve the problem of excessive degradation rate and insufficient biocompatibility of magnesium‐based bone implants, a polyphenol (EGCG) induced hydroxyapatite (HA) coating was prepared on the surface of AZ31 alloy. The physical and chemical properties and corrosion resistance of the coating were analysed in depth, and its biocompatibility was preliminarily explored in vitro. The results showed that the polyphenol (EGCG) conversion coating constructed on the AZ31 could successfully induce the formation of HA by complexing the phenolic hydroxyl group with calcium ions. The electrochemical and long‐term immersion experiments showed that the corrosion resistance of EGCG/HA composite coating was significantly improved. The self‐corrosion current density, hydrogen evolution and the increase of pH value of AZ31‐EGCG/HA were significantly lower than those of AZ31. On the basis of inhibiting the excessive corrosion of the substrate, the composite coating significantly improves the compatibility of pre‐osteoblasts, supports the adhesion and spreading and effectively reduces the haemolysis rate to less than 5%. The preparation method of the coating is simple, low cost and suitable for complex shape surfaces, which can significantly improve the corrosion resistance and biocompatibility of the AZ31 substrate. It is expected to provide a solution for the surface modification of magnesium‐based bone implants.\",\"PeriodicalId\":52235,\"journal\":{\"name\":\"Biosurface and Biotribology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosurface and Biotribology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/bsb2.12065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosurface and Biotribology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/bsb2.12065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要:为了解决镁基骨植入物降解速度过快和生物相容性不足的问题,在AZ31合金表面制备了多酚(EGCG)诱导羟基磷灰石(HA)涂层。深入分析了涂层的理化性能和耐蚀性,并初步探讨了其体外生物相容性。结果表明,在AZ31上构建的多酚(EGCG)转化膜可以通过酚羟基与钙离子的络合,成功诱导HA的形成。电化学实验和长期浸渍实验表明,EGCG/HA复合涂层的耐腐蚀性能明显提高。AZ31 - EGCG/HA的自腐蚀电流密度、析氢量和pH值的升高均显著低于AZ31。复合涂层在抑制基体过度腐蚀的基础上,显著提高了成骨前细胞的相容性,支持成骨前细胞的粘附和扩散,有效降低溶血率至5%以下。该涂层制备方法简单,成本低,适用于复杂形状表面,可显著提高AZ31基材的耐腐蚀性和生物相容性。为镁基骨植入物的表面改性提供了一种解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A polyphenol‐induced hydroxyapatite coating modulates corrosion resistance and biocompatibility of magnesium alloys
Abstract In order to solve the problem of excessive degradation rate and insufficient biocompatibility of magnesium‐based bone implants, a polyphenol (EGCG) induced hydroxyapatite (HA) coating was prepared on the surface of AZ31 alloy. The physical and chemical properties and corrosion resistance of the coating were analysed in depth, and its biocompatibility was preliminarily explored in vitro. The results showed that the polyphenol (EGCG) conversion coating constructed on the AZ31 could successfully induce the formation of HA by complexing the phenolic hydroxyl group with calcium ions. The electrochemical and long‐term immersion experiments showed that the corrosion resistance of EGCG/HA composite coating was significantly improved. The self‐corrosion current density, hydrogen evolution and the increase of pH value of AZ31‐EGCG/HA were significantly lower than those of AZ31. On the basis of inhibiting the excessive corrosion of the substrate, the composite coating significantly improves the compatibility of pre‐osteoblasts, supports the adhesion and spreading and effectively reduces the haemolysis rate to less than 5%. The preparation method of the coating is simple, low cost and suitable for complex shape surfaces, which can significantly improve the corrosion resistance and biocompatibility of the AZ31 substrate. It is expected to provide a solution for the surface modification of magnesium‐based bone implants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biosurface and Biotribology
Biosurface and Biotribology Engineering-Mechanical Engineering
CiteScore
1.70
自引率
0.00%
发文量
27
审稿时长
11 weeks
期刊最新文献
Protein hydrogels for biomedical applications Flow field characteristics and drag reduction performance of high–low velocity stripes on the biomimetic imbricated fish scale surfaces Advancements and challenges in bionic joint lubrication biomaterials for sports medicine Biofunctionalisation strategies of material surface and the inspired biological effects for bone repair Enhancing the biological functionality of poly (lactic-co-glycolic acid) cage-like structures through surface modification with micro- and nano-sized hydroxyapatite particles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1