{"title":"海量数据的可扩展证据 K 近邻分类","authors":"Chaoyu Gong;Jim Demmel;Yang You","doi":"10.1109/TBDATA.2023.3327220","DOIUrl":null,"url":null,"abstract":"The \n<i>K</i>\n-Nearest Neighbor (K-NN) algorithm has garnered widespread utilization in real-world scenarios, due to its exceptional interpretability that other classification algorithms may not have. The evidential K-NN (EK-NN) algorithm builds upon the same nearest neighbor search procedure as K-NN, and provides more informative classification outcomes. However, EK-NN is not practical for Big Data because it is computationally complex. First, the search for \n<i>K</i>\n nearest neighbors of test samples from \n<inline-formula><tex-math>$n$</tex-math></inline-formula>\n training samples requires \n<inline-formula><tex-math>$O(n^{2})$</tex-math></inline-formula>\n operations. Additionally, estimating parameters involves performing complicated matrix calculations that increase in scale as the dataset becomes larger. To address these issues, we propose two scalable EK-NN classifiers, Global Exact EK-NN and Local Approximate EK-NN, under the distributed Spark framework. Along with the Local Approximate EK-NN, a new distributed gradient descent algorithm is developed to learn parameters. Data parallelism is used to reduce negative impacts caused by data distribution differences. Experimental results show that Our algorithms are able to achieve state-of-the-art scaling efficiency and accuracy on large datasets with more than 10 million samples.","PeriodicalId":13106,"journal":{"name":"IEEE Transactions on Big Data","volume":"10 3","pages":"226-237"},"PeriodicalIF":7.5000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalable Evidential K-Nearest Neighbor Classification on Big Data\",\"authors\":\"Chaoyu Gong;Jim Demmel;Yang You\",\"doi\":\"10.1109/TBDATA.2023.3327220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The \\n<i>K</i>\\n-Nearest Neighbor (K-NN) algorithm has garnered widespread utilization in real-world scenarios, due to its exceptional interpretability that other classification algorithms may not have. The evidential K-NN (EK-NN) algorithm builds upon the same nearest neighbor search procedure as K-NN, and provides more informative classification outcomes. However, EK-NN is not practical for Big Data because it is computationally complex. First, the search for \\n<i>K</i>\\n nearest neighbors of test samples from \\n<inline-formula><tex-math>$n$</tex-math></inline-formula>\\n training samples requires \\n<inline-formula><tex-math>$O(n^{2})$</tex-math></inline-formula>\\n operations. Additionally, estimating parameters involves performing complicated matrix calculations that increase in scale as the dataset becomes larger. To address these issues, we propose two scalable EK-NN classifiers, Global Exact EK-NN and Local Approximate EK-NN, under the distributed Spark framework. Along with the Local Approximate EK-NN, a new distributed gradient descent algorithm is developed to learn parameters. Data parallelism is used to reduce negative impacts caused by data distribution differences. Experimental results show that Our algorithms are able to achieve state-of-the-art scaling efficiency and accuracy on large datasets with more than 10 million samples.\",\"PeriodicalId\":13106,\"journal\":{\"name\":\"IEEE Transactions on Big Data\",\"volume\":\"10 3\",\"pages\":\"226-237\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Big Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10294183/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Big Data","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10294183/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Scalable Evidential K-Nearest Neighbor Classification on Big Data
The
K
-Nearest Neighbor (K-NN) algorithm has garnered widespread utilization in real-world scenarios, due to its exceptional interpretability that other classification algorithms may not have. The evidential K-NN (EK-NN) algorithm builds upon the same nearest neighbor search procedure as K-NN, and provides more informative classification outcomes. However, EK-NN is not practical for Big Data because it is computationally complex. First, the search for
K
nearest neighbors of test samples from
$n$
training samples requires
$O(n^{2})$
operations. Additionally, estimating parameters involves performing complicated matrix calculations that increase in scale as the dataset becomes larger. To address these issues, we propose two scalable EK-NN classifiers, Global Exact EK-NN and Local Approximate EK-NN, under the distributed Spark framework. Along with the Local Approximate EK-NN, a new distributed gradient descent algorithm is developed to learn parameters. Data parallelism is used to reduce negative impacts caused by data distribution differences. Experimental results show that Our algorithms are able to achieve state-of-the-art scaling efficiency and accuracy on large datasets with more than 10 million samples.
期刊介绍:
The IEEE Transactions on Big Data publishes peer-reviewed articles focusing on big data. These articles present innovative research ideas and application results across disciplines, including novel theories, algorithms, and applications. Research areas cover a wide range, such as big data analytics, visualization, curation, management, semantics, infrastructure, standards, performance analysis, intelligence extraction, scientific discovery, security, privacy, and legal issues specific to big data. The journal also prioritizes applications of big data in fields generating massive datasets.