Yanjie Li, Lei Ding, Jixue Li, Mariska Ter Haak, Kate Rochlin, Lawrence Lamb
{"title":"基于ipsc的γ - δ T细胞的“现成”制造策略的发展","authors":"Yanjie Li, Lei Ding, Jixue Li, Mariska Ter Haak, Kate Rochlin, Lawrence Lamb","doi":"10.1136/jitc-2023-sitc2023.0418","DOIUrl":null,"url":null,"abstract":"<h3>Background</h3> Gamma-delta (γδ) T cells are depleted during cancer progression resulting in the progressive loss of anti-cancer activity. Elevated numbers of γδ T cells are associated with greater survival outcomes in both hematopoietic and solid malignancies. Induced pluripotent stem cell (iPSC) derived γδ T cells could address the therapeutic challenges of multiple allogeneic γδ T cell infusions as iPSCs possess nearly unlimited self-renewal and multi-lineage differentiation potential. These can be genetically modified, selected, and propagated to provide a source of potentially ‘off-the-shelf’ immune cells. <h3>Methods</h3> Precursor cells obtained from healthy volunteer donors were reprogrammed into iPSCs using non-integrating Yamanaka factors. A feeder-free multi-step strategy was used to differentiate iPSCs, leading to the generation of Vδ1+ γδ T cells. Characterization of the Vδ1+ T cell product included multiplex genomic PCR assays and Sanger sequencing to examine the rearrangement of the TCRγ and TCRδ gene loci, and G-band karyotype analysis. Pluripotent markers (Tra-1–60, OCT3/4 & SSEA4), HPC markers (CD34, CD43), γδ T cell surface markers (CD3, γδ TCR, CD4, CD8, CD16, CD56), effector memory markers (CD45RA, CD27), natural cytotoxicity receptors (NKG2D) were identified using multiparameter flow cytometry. T cell function was determined by flow cytometric cytotoxicity assays against K562, OLM13, U87MG, OVSAHO, OVCAR-3, KURAMUCHI targets at increasing Effector to Target (E:T) ratios. Th1/2/17 cytokine release was determined following PMA/ionomycin stimulation and LEGENDplex™ bead-based immunoassays. <h3>Results</h3> We generated Vδ1T-iPSC lines (iVδ1T) identified as Vγ5-to-Jγ1/2 and Vδ1-to-Jδ1 recombination. One iPSC line showed normal karyotype with 99% cells expressing OCT3/4 & SSEA4. The differentiation process generated 70+ million iVδ1T cells from 3 million iPSCs expressing γδ T cell markers CD45, CD3, Vδ1-TCR, CD16, CD56, NKG2D, CD45RA, and CD27. Cytokine release following PMA/ionomycin stimulation showed increases of at least 50x for Granzyme A, 300x for IFN-γ, 1400x for TNF-α, ~10 to 20x for Granzyme B, ~5 to 10x for Perforin, ~6x for Granulysin. IL-6 was not detected either before or after stimulation, and IL17A was at low concentration. At a 16:1 E:T ratio, preliminary data shows that Vδ1+ γδ T cells killed K562 (CML) 95.7%; MOLM13 (AML) 60.3%; U87MG (glioblastoma) 70.3%; and ovarian cancer lines OVSAHO 57.1%, OVCAR-3 69.6%, and KURAMUCHI 55.1%. <h3>Conclusions</h3> We generated Vδ1+ iPSC derived γδ T cells with effector cytokine phenotype and low risk for cytokine release syndrome. Robust cytotoxic activity was seen across a variety of cancer cell lines, potentially providing an off-the-shelf platform for allogeneic cell therapy.","PeriodicalId":500964,"journal":{"name":"Regular and Young Investigator Award Abstracts","volume":"6 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"418 The development of ‘off-the-shelf’ manufacturing strategies of iPSC-based gamma-delta T cells\",\"authors\":\"Yanjie Li, Lei Ding, Jixue Li, Mariska Ter Haak, Kate Rochlin, Lawrence Lamb\",\"doi\":\"10.1136/jitc-2023-sitc2023.0418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Background</h3> Gamma-delta (γδ) T cells are depleted during cancer progression resulting in the progressive loss of anti-cancer activity. Elevated numbers of γδ T cells are associated with greater survival outcomes in both hematopoietic and solid malignancies. Induced pluripotent stem cell (iPSC) derived γδ T cells could address the therapeutic challenges of multiple allogeneic γδ T cell infusions as iPSCs possess nearly unlimited self-renewal and multi-lineage differentiation potential. These can be genetically modified, selected, and propagated to provide a source of potentially ‘off-the-shelf’ immune cells. <h3>Methods</h3> Precursor cells obtained from healthy volunteer donors were reprogrammed into iPSCs using non-integrating Yamanaka factors. A feeder-free multi-step strategy was used to differentiate iPSCs, leading to the generation of Vδ1+ γδ T cells. Characterization of the Vδ1+ T cell product included multiplex genomic PCR assays and Sanger sequencing to examine the rearrangement of the TCRγ and TCRδ gene loci, and G-band karyotype analysis. Pluripotent markers (Tra-1–60, OCT3/4 & SSEA4), HPC markers (CD34, CD43), γδ T cell surface markers (CD3, γδ TCR, CD4, CD8, CD16, CD56), effector memory markers (CD45RA, CD27), natural cytotoxicity receptors (NKG2D) were identified using multiparameter flow cytometry. T cell function was determined by flow cytometric cytotoxicity assays against K562, OLM13, U87MG, OVSAHO, OVCAR-3, KURAMUCHI targets at increasing Effector to Target (E:T) ratios. Th1/2/17 cytokine release was determined following PMA/ionomycin stimulation and LEGENDplex™ bead-based immunoassays. <h3>Results</h3> We generated Vδ1T-iPSC lines (iVδ1T) identified as Vγ5-to-Jγ1/2 and Vδ1-to-Jδ1 recombination. One iPSC line showed normal karyotype with 99% cells expressing OCT3/4 & SSEA4. The differentiation process generated 70+ million iVδ1T cells from 3 million iPSCs expressing γδ T cell markers CD45, CD3, Vδ1-TCR, CD16, CD56, NKG2D, CD45RA, and CD27. Cytokine release following PMA/ionomycin stimulation showed increases of at least 50x for Granzyme A, 300x for IFN-γ, 1400x for TNF-α, ~10 to 20x for Granzyme B, ~5 to 10x for Perforin, ~6x for Granulysin. IL-6 was not detected either before or after stimulation, and IL17A was at low concentration. At a 16:1 E:T ratio, preliminary data shows that Vδ1+ γδ T cells killed K562 (CML) 95.7%; MOLM13 (AML) 60.3%; U87MG (glioblastoma) 70.3%; and ovarian cancer lines OVSAHO 57.1%, OVCAR-3 69.6%, and KURAMUCHI 55.1%. <h3>Conclusions</h3> We generated Vδ1+ iPSC derived γδ T cells with effector cytokine phenotype and low risk for cytokine release syndrome. Robust cytotoxic activity was seen across a variety of cancer cell lines, potentially providing an off-the-shelf platform for allogeneic cell therapy.\",\"PeriodicalId\":500964,\"journal\":{\"name\":\"Regular and Young Investigator Award Abstracts\",\"volume\":\"6 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regular and Young Investigator Award Abstracts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1136/jitc-2023-sitc2023.0418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regular and Young Investigator Award Abstracts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1136/jitc-2023-sitc2023.0418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
418 The development of ‘off-the-shelf’ manufacturing strategies of iPSC-based gamma-delta T cells
Background
Gamma-delta (γδ) T cells are depleted during cancer progression resulting in the progressive loss of anti-cancer activity. Elevated numbers of γδ T cells are associated with greater survival outcomes in both hematopoietic and solid malignancies. Induced pluripotent stem cell (iPSC) derived γδ T cells could address the therapeutic challenges of multiple allogeneic γδ T cell infusions as iPSCs possess nearly unlimited self-renewal and multi-lineage differentiation potential. These can be genetically modified, selected, and propagated to provide a source of potentially ‘off-the-shelf’ immune cells.
Methods
Precursor cells obtained from healthy volunteer donors were reprogrammed into iPSCs using non-integrating Yamanaka factors. A feeder-free multi-step strategy was used to differentiate iPSCs, leading to the generation of Vδ1+ γδ T cells. Characterization of the Vδ1+ T cell product included multiplex genomic PCR assays and Sanger sequencing to examine the rearrangement of the TCRγ and TCRδ gene loci, and G-band karyotype analysis. Pluripotent markers (Tra-1–60, OCT3/4 & SSEA4), HPC markers (CD34, CD43), γδ T cell surface markers (CD3, γδ TCR, CD4, CD8, CD16, CD56), effector memory markers (CD45RA, CD27), natural cytotoxicity receptors (NKG2D) were identified using multiparameter flow cytometry. T cell function was determined by flow cytometric cytotoxicity assays against K562, OLM13, U87MG, OVSAHO, OVCAR-3, KURAMUCHI targets at increasing Effector to Target (E:T) ratios. Th1/2/17 cytokine release was determined following PMA/ionomycin stimulation and LEGENDplex™ bead-based immunoassays.
Results
We generated Vδ1T-iPSC lines (iVδ1T) identified as Vγ5-to-Jγ1/2 and Vδ1-to-Jδ1 recombination. One iPSC line showed normal karyotype with 99% cells expressing OCT3/4 & SSEA4. The differentiation process generated 70+ million iVδ1T cells from 3 million iPSCs expressing γδ T cell markers CD45, CD3, Vδ1-TCR, CD16, CD56, NKG2D, CD45RA, and CD27. Cytokine release following PMA/ionomycin stimulation showed increases of at least 50x for Granzyme A, 300x for IFN-γ, 1400x for TNF-α, ~10 to 20x for Granzyme B, ~5 to 10x for Perforin, ~6x for Granulysin. IL-6 was not detected either before or after stimulation, and IL17A was at low concentration. At a 16:1 E:T ratio, preliminary data shows that Vδ1+ γδ T cells killed K562 (CML) 95.7%; MOLM13 (AML) 60.3%; U87MG (glioblastoma) 70.3%; and ovarian cancer lines OVSAHO 57.1%, OVCAR-3 69.6%, and KURAMUCHI 55.1%.
Conclusions
We generated Vδ1+ iPSC derived γδ T cells with effector cytokine phenotype and low risk for cytokine release syndrome. Robust cytotoxic activity was seen across a variety of cancer cell lines, potentially providing an off-the-shelf platform for allogeneic cell therapy.