基于ipsc的γ - δ T细胞的“现成”制造策略的发展

Yanjie Li, Lei Ding, Jixue Li, Mariska Ter Haak, Kate Rochlin, Lawrence Lamb
{"title":"基于ipsc的γ - δ T细胞的“现成”制造策略的发展","authors":"Yanjie Li, Lei Ding, Jixue Li, Mariska Ter Haak, Kate Rochlin, Lawrence Lamb","doi":"10.1136/jitc-2023-sitc2023.0418","DOIUrl":null,"url":null,"abstract":"<h3>Background</h3> Gamma-delta (γδ) T cells are depleted during cancer progression resulting in the progressive loss of anti-cancer activity. Elevated numbers of γδ T cells are associated with greater survival outcomes in both hematopoietic and solid malignancies. Induced pluripotent stem cell (iPSC) derived γδ T cells could address the therapeutic challenges of multiple allogeneic γδ T cell infusions as iPSCs possess nearly unlimited self-renewal and multi-lineage differentiation potential. These can be genetically modified, selected, and propagated to provide a source of potentially ‘off-the-shelf’ immune cells. <h3>Methods</h3> Precursor cells obtained from healthy volunteer donors were reprogrammed into iPSCs using non-integrating Yamanaka factors. A feeder-free multi-step strategy was used to differentiate iPSCs, leading to the generation of Vδ1+ γδ T cells. Characterization of the Vδ1+ T cell product included multiplex genomic PCR assays and Sanger sequencing to examine the rearrangement of the TCRγ and TCRδ gene loci, and G-band karyotype analysis. Pluripotent markers (Tra-1–60, OCT3/4 &amp; SSEA4), HPC markers (CD34, CD43), γδ T cell surface markers (CD3, γδ TCR, CD4, CD8, CD16, CD56), effector memory markers (CD45RA, CD27), natural cytotoxicity receptors (NKG2D) were identified using multiparameter flow cytometry. T cell function was determined by flow cytometric cytotoxicity assays against K562, OLM13, U87MG, OVSAHO, OVCAR-3, KURAMUCHI targets at increasing Effector to Target (E:T) ratios. Th1/2/17 cytokine release was determined following PMA/ionomycin stimulation and LEGENDplex™ bead-based immunoassays. <h3>Results</h3> We generated Vδ1T-iPSC lines (iVδ1T) identified as Vγ5-to-Jγ1/2 and Vδ1-to-Jδ1 recombination. One iPSC line showed normal karyotype with 99% cells expressing OCT3/4 &amp; SSEA4. The differentiation process generated 70+ million iVδ1T cells from 3 million iPSCs expressing γδ T cell markers CD45, CD3, Vδ1-TCR, CD16, CD56, NKG2D, CD45RA, and CD27. Cytokine release following PMA/ionomycin stimulation showed increases of at least 50x for Granzyme A, 300x for IFN-γ, 1400x for TNF-α, ~10 to 20x for Granzyme B, ~5 to 10x for Perforin, ~6x for Granulysin. IL-6 was not detected either before or after stimulation, and IL17A was at low concentration. At a 16:1 E:T ratio, preliminary data shows that Vδ1+ γδ T cells killed K562 (CML) 95.7%; MOLM13 (AML) 60.3%; U87MG (glioblastoma) 70.3%; and ovarian cancer lines OVSAHO 57.1%, OVCAR-3 69.6%, and KURAMUCHI 55.1%. <h3>Conclusions</h3> We generated Vδ1+ iPSC derived γδ T cells with effector cytokine phenotype and low risk for cytokine release syndrome. Robust cytotoxic activity was seen across a variety of cancer cell lines, potentially providing an off-the-shelf platform for allogeneic cell therapy.","PeriodicalId":500964,"journal":{"name":"Regular and Young Investigator Award Abstracts","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"418 The development of ‘off-the-shelf’ manufacturing strategies of iPSC-based gamma-delta T cells\",\"authors\":\"Yanjie Li, Lei Ding, Jixue Li, Mariska Ter Haak, Kate Rochlin, Lawrence Lamb\",\"doi\":\"10.1136/jitc-2023-sitc2023.0418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Background</h3> Gamma-delta (γδ) T cells are depleted during cancer progression resulting in the progressive loss of anti-cancer activity. Elevated numbers of γδ T cells are associated with greater survival outcomes in both hematopoietic and solid malignancies. Induced pluripotent stem cell (iPSC) derived γδ T cells could address the therapeutic challenges of multiple allogeneic γδ T cell infusions as iPSCs possess nearly unlimited self-renewal and multi-lineage differentiation potential. These can be genetically modified, selected, and propagated to provide a source of potentially ‘off-the-shelf’ immune cells. <h3>Methods</h3> Precursor cells obtained from healthy volunteer donors were reprogrammed into iPSCs using non-integrating Yamanaka factors. A feeder-free multi-step strategy was used to differentiate iPSCs, leading to the generation of Vδ1+ γδ T cells. Characterization of the Vδ1+ T cell product included multiplex genomic PCR assays and Sanger sequencing to examine the rearrangement of the TCRγ and TCRδ gene loci, and G-band karyotype analysis. Pluripotent markers (Tra-1–60, OCT3/4 &amp; SSEA4), HPC markers (CD34, CD43), γδ T cell surface markers (CD3, γδ TCR, CD4, CD8, CD16, CD56), effector memory markers (CD45RA, CD27), natural cytotoxicity receptors (NKG2D) were identified using multiparameter flow cytometry. T cell function was determined by flow cytometric cytotoxicity assays against K562, OLM13, U87MG, OVSAHO, OVCAR-3, KURAMUCHI targets at increasing Effector to Target (E:T) ratios. Th1/2/17 cytokine release was determined following PMA/ionomycin stimulation and LEGENDplex™ bead-based immunoassays. <h3>Results</h3> We generated Vδ1T-iPSC lines (iVδ1T) identified as Vγ5-to-Jγ1/2 and Vδ1-to-Jδ1 recombination. One iPSC line showed normal karyotype with 99% cells expressing OCT3/4 &amp; SSEA4. The differentiation process generated 70+ million iVδ1T cells from 3 million iPSCs expressing γδ T cell markers CD45, CD3, Vδ1-TCR, CD16, CD56, NKG2D, CD45RA, and CD27. Cytokine release following PMA/ionomycin stimulation showed increases of at least 50x for Granzyme A, 300x for IFN-γ, 1400x for TNF-α, ~10 to 20x for Granzyme B, ~5 to 10x for Perforin, ~6x for Granulysin. IL-6 was not detected either before or after stimulation, and IL17A was at low concentration. At a 16:1 E:T ratio, preliminary data shows that Vδ1+ γδ T cells killed K562 (CML) 95.7%; MOLM13 (AML) 60.3%; U87MG (glioblastoma) 70.3%; and ovarian cancer lines OVSAHO 57.1%, OVCAR-3 69.6%, and KURAMUCHI 55.1%. <h3>Conclusions</h3> We generated Vδ1+ iPSC derived γδ T cells with effector cytokine phenotype and low risk for cytokine release syndrome. Robust cytotoxic activity was seen across a variety of cancer cell lines, potentially providing an off-the-shelf platform for allogeneic cell therapy.\",\"PeriodicalId\":500964,\"journal\":{\"name\":\"Regular and Young Investigator Award Abstracts\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regular and Young Investigator Award Abstracts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1136/jitc-2023-sitc2023.0418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regular and Young Investigator Award Abstracts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1136/jitc-2023-sitc2023.0418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

γ - δ (γδ) T细胞在癌症进展过程中被耗尽,导致抗癌活性逐渐丧失。在造血和实体恶性肿瘤中,γδ T细胞数量的升高与更高的生存结果相关。诱导多能干细胞(iPSC)衍生的γδ T细胞具有几乎无限的自我更新和多谱系分化潜力,可以解决多种异体γδ T细胞输注的治疗挑战。这些细胞可以经过基因改造、筛选和繁殖,以提供潜在的“现成的”免疫细胞来源。方法利用非整合Yamanaka因子将健康志愿者供体的前体细胞重组为iPSCs。采用无喂食多步策略分化iPSCs,导致Vδ1+ γδ T细胞的产生。Vδ1+ T细胞产物的鉴定包括多重基因组PCR测定和Sanger测序,以检查TCRγ和TCRδ基因位点的重排,以及g带核型分析。多能标记(Tra-1-60, OCT3/4 &采用多参数流式细胞术对SSEA4、HPC标记物(CD34、CD43)、γδ T细胞表面标记物(CD3、γδ TCR、CD4、CD8、CD16、CD56)、效应记忆标记物(CD45RA、CD27)、天然细胞毒性受体(NKG2D)进行鉴定。流式细胞术检测T细胞对K562、OLM13、U87MG、OVSAHO、OVCAR-3、KURAMUCHI靶点的细胞毒性,提高靶效比(E:T)。在PMA/离子霉素刺激和LEGENDplex™微球免疫分析后,检测Th1/2/17细胞因子释放。结果获得了Vδ1T-iPSC系(iVδ1T),鉴定为v γ5- j γ1/2和v δ1- j δ1重组系。一个iPSC细胞系显示正常核型,99%的细胞表达OCT3/4和amp;SSEA4。分化过程从300万个iPSCs中产生了7000多万个表达γδ T细胞标记物CD45、CD3、Vδ1-TCR、CD16、CD56、NKG2D、CD45RA和CD27的iVδ1T细胞。PMA/离子霉素刺激后的细胞因子释放显示颗粒酶A至少增加50倍,IFN-γ增加300倍,TNF-α增加1400倍,颗粒酶B增加10 ~ 20倍,穿孔素增加5 ~10倍,颗粒酶增加6倍。刺激前后均未检测到IL-6, il - 17a浓度较低。在16:1的E:T比下,初步数据显示,Vδ1+ γδ T细胞杀伤K562 (CML) 95.7%;Molm13 (aml) 60.3%;U87MG(胶质母细胞瘤)70.3%;卵巢癌系OVSAHO 57.1%, OVCAR-3 69.6%, KURAMUCHI 55.1%。结论我们获得了Vδ1+ iPSC衍生的γδ T细胞,具有效应细胞因子表型,细胞因子释放综合征风险低。在多种癌细胞系中发现了强大的细胞毒活性,可能为同种异体细胞治疗提供现成的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
418 The development of ‘off-the-shelf’ manufacturing strategies of iPSC-based gamma-delta T cells

Background

Gamma-delta (γδ) T cells are depleted during cancer progression resulting in the progressive loss of anti-cancer activity. Elevated numbers of γδ T cells are associated with greater survival outcomes in both hematopoietic and solid malignancies. Induced pluripotent stem cell (iPSC) derived γδ T cells could address the therapeutic challenges of multiple allogeneic γδ T cell infusions as iPSCs possess nearly unlimited self-renewal and multi-lineage differentiation potential. These can be genetically modified, selected, and propagated to provide a source of potentially ‘off-the-shelf’ immune cells.

Methods

Precursor cells obtained from healthy volunteer donors were reprogrammed into iPSCs using non-integrating Yamanaka factors. A feeder-free multi-step strategy was used to differentiate iPSCs, leading to the generation of Vδ1+ γδ T cells. Characterization of the Vδ1+ T cell product included multiplex genomic PCR assays and Sanger sequencing to examine the rearrangement of the TCRγ and TCRδ gene loci, and G-band karyotype analysis. Pluripotent markers (Tra-1–60, OCT3/4 & SSEA4), HPC markers (CD34, CD43), γδ T cell surface markers (CD3, γδ TCR, CD4, CD8, CD16, CD56), effector memory markers (CD45RA, CD27), natural cytotoxicity receptors (NKG2D) were identified using multiparameter flow cytometry. T cell function was determined by flow cytometric cytotoxicity assays against K562, OLM13, U87MG, OVSAHO, OVCAR-3, KURAMUCHI targets at increasing Effector to Target (E:T) ratios. Th1/2/17 cytokine release was determined following PMA/ionomycin stimulation and LEGENDplex™ bead-based immunoassays.

Results

We generated Vδ1T-iPSC lines (iVδ1T) identified as Vγ5-to-Jγ1/2 and Vδ1-to-Jδ1 recombination. One iPSC line showed normal karyotype with 99% cells expressing OCT3/4 & SSEA4. The differentiation process generated 70+ million iVδ1T cells from 3 million iPSCs expressing γδ T cell markers CD45, CD3, Vδ1-TCR, CD16, CD56, NKG2D, CD45RA, and CD27. Cytokine release following PMA/ionomycin stimulation showed increases of at least 50x for Granzyme A, 300x for IFN-γ, 1400x for TNF-α, ~10 to 20x for Granzyme B, ~5 to 10x for Perforin, ~6x for Granulysin. IL-6 was not detected either before or after stimulation, and IL17A was at low concentration. At a 16:1 E:T ratio, preliminary data shows that Vδ1+ γδ T cells killed K562 (CML) 95.7%; MOLM13 (AML) 60.3%; U87MG (glioblastoma) 70.3%; and ovarian cancer lines OVSAHO 57.1%, OVCAR-3 69.6%, and KURAMUCHI 55.1%.

Conclusions

We generated Vδ1+ iPSC derived γδ T cells with effector cytokine phenotype and low risk for cytokine release syndrome. Robust cytotoxic activity was seen across a variety of cancer cell lines, potentially providing an off-the-shelf platform for allogeneic cell therapy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
1455 Characterization of gene expression signatures of tumor immunogenicity and cellular proliferation from murine cancer models grownin vitroandin vivo 1193 Synergistic targeting of multiple activating pathways with natural killer cell engagers 1413 Immunogenicity of SARS-CoV-2 mRNA vaccines in individuals with thymic epithelial tumors 1150 DM005, an EGFR × MET bispecific antibody-drug conjugate, showed robust anti-tumor activity in PDX models 1274 Infliximab for decompensated diabetes following immune checkpoint inhibitor therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1