预测燃气轮机排放的表格式机器学习方法

IF 4 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Machine learning and knowledge extraction Pub Date : 2023-08-14 DOI:10.3390/make5030055
Rebecca Potts, Rick Hackney, Georgios Leontidis
{"title":"预测燃气轮机排放的表格式机器学习方法","authors":"Rebecca Potts, Rick Hackney, Georgios Leontidis","doi":"10.3390/make5030055","DOIUrl":null,"url":null,"abstract":"Predicting emissions for gas turbines is critical for monitoring harmful pollutants being released into the atmosphere. In this study, we evaluate the performance of machine learning models for predicting emissions for gas turbines. We compared an existing predictive emissions model, a first-principles-based Chemical Kinetics model, against two machine learning models we developed based on the Self-Attention and Intersample Attention Transformer (SAINT) and eXtreme Gradient Boosting (XGBoost), with the aim to demonstrate the improved predictive performance of nitrogen oxides (NOx) and carbon monoxide (CO) using machine learning techniques and determine whether XGBoost or a deep learning model performs the best on a specific real-life gas turbine dataset. Our analysis utilises a Siemens Energy gas turbine test bed tabular dataset to train and validate the machine learning models. Additionally, we explore the trade-off between incorporating more features to enhance the model complexity, and the resulting presence of increased missing values in the dataset.","PeriodicalId":93033,"journal":{"name":"Machine learning and knowledge extraction","volume":"11 1","pages":"0"},"PeriodicalIF":4.0000,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Tabular Machine Learning Methods for Predicting Gas Turbine Emissions\",\"authors\":\"Rebecca Potts, Rick Hackney, Georgios Leontidis\",\"doi\":\"10.3390/make5030055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting emissions for gas turbines is critical for monitoring harmful pollutants being released into the atmosphere. In this study, we evaluate the performance of machine learning models for predicting emissions for gas turbines. We compared an existing predictive emissions model, a first-principles-based Chemical Kinetics model, against two machine learning models we developed based on the Self-Attention and Intersample Attention Transformer (SAINT) and eXtreme Gradient Boosting (XGBoost), with the aim to demonstrate the improved predictive performance of nitrogen oxides (NOx) and carbon monoxide (CO) using machine learning techniques and determine whether XGBoost or a deep learning model performs the best on a specific real-life gas turbine dataset. Our analysis utilises a Siemens Energy gas turbine test bed tabular dataset to train and validate the machine learning models. Additionally, we explore the trade-off between incorporating more features to enhance the model complexity, and the resulting presence of increased missing values in the dataset.\",\"PeriodicalId\":93033,\"journal\":{\"name\":\"Machine learning and knowledge extraction\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine learning and knowledge extraction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/make5030055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning and knowledge extraction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/make5030055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

摘要

预测燃气轮机的排放量对于监测排放到大气中的有害污染物至关重要。在本研究中,我们评估了用于预测燃气轮机排放的机器学习模型的性能。我们将现有的预测排放模型(基于第一性原理的化学动力学模型)与我们基于自注意和样本间注意转换器(SAINT)和极端梯度增强(XGBoost)开发的两种机器学习模型进行了比较。目的是展示使用机器学习技术改进的氮氧化物(NOx)和一氧化碳(CO)预测性能,并确定XGBoost或深度学习模型在特定的现实燃气轮机数据集上表现最佳。我们的分析利用西门子能源燃气轮机试验台表格数据集来训练和验证机器学习模型。此外,我们探讨了合并更多特征以提高模型复杂性与数据集中缺失值增加之间的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tabular Machine Learning Methods for Predicting Gas Turbine Emissions
Predicting emissions for gas turbines is critical for monitoring harmful pollutants being released into the atmosphere. In this study, we evaluate the performance of machine learning models for predicting emissions for gas turbines. We compared an existing predictive emissions model, a first-principles-based Chemical Kinetics model, against two machine learning models we developed based on the Self-Attention and Intersample Attention Transformer (SAINT) and eXtreme Gradient Boosting (XGBoost), with the aim to demonstrate the improved predictive performance of nitrogen oxides (NOx) and carbon monoxide (CO) using machine learning techniques and determine whether XGBoost or a deep learning model performs the best on a specific real-life gas turbine dataset. Our analysis utilises a Siemens Energy gas turbine test bed tabular dataset to train and validate the machine learning models. Additionally, we explore the trade-off between incorporating more features to enhance the model complexity, and the resulting presence of increased missing values in the dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.30
自引率
0.00%
发文量
0
审稿时长
7 weeks
期刊最新文献
Knowledge Graph Extraction of Business Interactions from News Text for Business Networking Analysis Machine Learning for an Enhanced Credit Risk Analysis: A Comparative Study of Loan Approval Prediction Models Integrating Mental Health Data A Data Mining Approach for Health Transport Demand Predicting Wind Comfort in an Urban Area: A Comparison of a Regression- with a Classification-CNN for General Wind Rose Statistics An Evaluative Baseline for Sentence-Level Semantic Division
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1