Tim Burschyk, Yannic Cabac, Daniel Silberhorn, Brigitte Boden, Björn Nagel
{"title":"液氢储存的设计取代了短程飞机的概念","authors":"Tim Burschyk, Yannic Cabac, Daniel Silberhorn, Brigitte Boden, Björn Nagel","doi":"10.1007/s13272-023-00689-4","DOIUrl":null,"url":null,"abstract":"Abstract Preliminary design trades for the liquid hydrogen storage system of a short-range aircraft are presented. Two promising insulation methods, namely rigid foam and multilayer insulation, are identified as main design drivers. In addition, the maximal pressure and the shape of the hydrogen storage tank influence the aircraft performance and the insulation efficiency. In this study, the hydrogen storage tanks are integrated in wing pods. The main effects driven by the design parameters are addressed using conceptual and preliminary methods: models are carried out for the storage mass, additional drag, propeller efficiency loss and the dynamical thermodynamic behavior of the liquid hydrogen storage. These effects are coupled making an integrated design method necessary. For the sizing of the liquid hydrogen storage, a multidisciplinary workflow is set up including the aircraft sensitivities on the design mission block fuel. The trade-off study reveals the opposing trend between insulation efficiency and aircraft performance. For the insulation architecture based on rigid foam, the penalties implied by the storage tank on aircraft level and the penalties due to vented hydrogen can be balanced and result in minimal block fuel for the design mission. The application of multilayer insulation avoids venting during the design mission, but has an increased penalty on the aircraft performance compared to rigid foam insulation. Besides the criterion of minimal block fuel, the dormancy time is compared, indicating the thermal efficiency. Applying multilayer insulation, the dormancy time can be increased significantly calling for a discussion of operational requirements for hydrogen-powered aircraft.","PeriodicalId":38083,"journal":{"name":"CEAS Aeronautical Journal","volume":"12 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Liquid hydrogen storage design trades for a short-range aircraft concept\",\"authors\":\"Tim Burschyk, Yannic Cabac, Daniel Silberhorn, Brigitte Boden, Björn Nagel\",\"doi\":\"10.1007/s13272-023-00689-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Preliminary design trades for the liquid hydrogen storage system of a short-range aircraft are presented. Two promising insulation methods, namely rigid foam and multilayer insulation, are identified as main design drivers. In addition, the maximal pressure and the shape of the hydrogen storage tank influence the aircraft performance and the insulation efficiency. In this study, the hydrogen storage tanks are integrated in wing pods. The main effects driven by the design parameters are addressed using conceptual and preliminary methods: models are carried out for the storage mass, additional drag, propeller efficiency loss and the dynamical thermodynamic behavior of the liquid hydrogen storage. These effects are coupled making an integrated design method necessary. For the sizing of the liquid hydrogen storage, a multidisciplinary workflow is set up including the aircraft sensitivities on the design mission block fuel. The trade-off study reveals the opposing trend between insulation efficiency and aircraft performance. For the insulation architecture based on rigid foam, the penalties implied by the storage tank on aircraft level and the penalties due to vented hydrogen can be balanced and result in minimal block fuel for the design mission. The application of multilayer insulation avoids venting during the design mission, but has an increased penalty on the aircraft performance compared to rigid foam insulation. Besides the criterion of minimal block fuel, the dormancy time is compared, indicating the thermal efficiency. Applying multilayer insulation, the dormancy time can be increased significantly calling for a discussion of operational requirements for hydrogen-powered aircraft.\",\"PeriodicalId\":38083,\"journal\":{\"name\":\"CEAS Aeronautical Journal\",\"volume\":\"12 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CEAS Aeronautical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13272-023-00689-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CEAS Aeronautical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13272-023-00689-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Liquid hydrogen storage design trades for a short-range aircraft concept
Abstract Preliminary design trades for the liquid hydrogen storage system of a short-range aircraft are presented. Two promising insulation methods, namely rigid foam and multilayer insulation, are identified as main design drivers. In addition, the maximal pressure and the shape of the hydrogen storage tank influence the aircraft performance and the insulation efficiency. In this study, the hydrogen storage tanks are integrated in wing pods. The main effects driven by the design parameters are addressed using conceptual and preliminary methods: models are carried out for the storage mass, additional drag, propeller efficiency loss and the dynamical thermodynamic behavior of the liquid hydrogen storage. These effects are coupled making an integrated design method necessary. For the sizing of the liquid hydrogen storage, a multidisciplinary workflow is set up including the aircraft sensitivities on the design mission block fuel. The trade-off study reveals the opposing trend between insulation efficiency and aircraft performance. For the insulation architecture based on rigid foam, the penalties implied by the storage tank on aircraft level and the penalties due to vented hydrogen can be balanced and result in minimal block fuel for the design mission. The application of multilayer insulation avoids venting during the design mission, but has an increased penalty on the aircraft performance compared to rigid foam insulation. Besides the criterion of minimal block fuel, the dormancy time is compared, indicating the thermal efficiency. Applying multilayer insulation, the dormancy time can be increased significantly calling for a discussion of operational requirements for hydrogen-powered aircraft.
期刊介绍:
The CEAS Aeronautical Journal has been created under the umbrella of CEAS to provide an appropriate platform for excellent scientific publications submitted by scientists and engineers. The German Aerospace Center (DLR) and the European Space Agency (ESA) support the Journal.The Journal is devoted to publishing results and findings in all areas of aeronautics-related science and technology as well as reports on new developments in design and manufacturing of aircraft, rotorcraft, and unmanned aerial vehicles. Of interest are also (invited) in-depth reviews of the status of development in specific areas of relevance to aeronautics, and descriptions of the potential way forward. Typical disciplines of interest include flight physics and aerodynamics, aeroelasticity and structural mechanics, aeroacoustics, structures and materials, flight mechanics and flight control, systems, flight guidance, air traffic management, communication, navigation and surveillance, aircraft and aircraft design, rotorcraft and propulsion.The Journal publishes peer-reviewed original articles, (invited) reviews and short communications.