Ling Kang, Yunliang Wen, Liwei Zhou, Hao Chen, Jinwang Ye
{"title":"基于机器学习模型的黄河流域干旱驱动机制及风险态势预测","authors":"Ling Kang, Yunliang Wen, Liwei Zhou, Hao Chen, Jinwang Ye","doi":"10.1080/19475705.2023.2279493","DOIUrl":null,"url":null,"abstract":"Under global warming, the acceleration of the water cycle has increased the risk of drought in the Yellow River Basin. Revealing the drought driving mechanisms in the basin and understanding the risk situation of drought have become particularly important. This paper uses wavelet analysis and transfer entropy to analyze the drought driving mechanisms. In addition, an Improved Particle Swarm Optimization (IPSO) coupled with Long Short-Term Memory (LSTM) is used for drought risk prediction. The results are as follows: (1) Hydrological drought lags behind meteorological drought by 2–3 months, and they show two main periods on different time scales, which are 5–6 months and 8–14 months, respectively. (2) Rainfall, runoff, temperature, humidity, and vapor pressure are the main drought driving factors, with rainfall and humidity having the most significant impact. (3) The IPSO-LSTM model has improved the process of selecting model parameters based on empirical experiences in the LSTM model, improving the prediction accuracy by an average of 3.1%. This paper provides a scientific basis for water resource management and drought risk assessment in the basin, to better cope with future climate challenges.","PeriodicalId":51283,"journal":{"name":"Geomatics Natural Hazards & Risk","volume":" 1011","pages":"0"},"PeriodicalIF":4.5000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Drought driving mechanism and risk situation prediction based on machine learning models in the Yellow River Basin, China\",\"authors\":\"Ling Kang, Yunliang Wen, Liwei Zhou, Hao Chen, Jinwang Ye\",\"doi\":\"10.1080/19475705.2023.2279493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Under global warming, the acceleration of the water cycle has increased the risk of drought in the Yellow River Basin. Revealing the drought driving mechanisms in the basin and understanding the risk situation of drought have become particularly important. This paper uses wavelet analysis and transfer entropy to analyze the drought driving mechanisms. In addition, an Improved Particle Swarm Optimization (IPSO) coupled with Long Short-Term Memory (LSTM) is used for drought risk prediction. The results are as follows: (1) Hydrological drought lags behind meteorological drought by 2–3 months, and they show two main periods on different time scales, which are 5–6 months and 8–14 months, respectively. (2) Rainfall, runoff, temperature, humidity, and vapor pressure are the main drought driving factors, with rainfall and humidity having the most significant impact. (3) The IPSO-LSTM model has improved the process of selecting model parameters based on empirical experiences in the LSTM model, improving the prediction accuracy by an average of 3.1%. This paper provides a scientific basis for water resource management and drought risk assessment in the basin, to better cope with future climate challenges.\",\"PeriodicalId\":51283,\"journal\":{\"name\":\"Geomatics Natural Hazards & Risk\",\"volume\":\" 1011\",\"pages\":\"0\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomatics Natural Hazards & Risk\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19475705.2023.2279493\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomatics Natural Hazards & Risk","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19475705.2023.2279493","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Drought driving mechanism and risk situation prediction based on machine learning models in the Yellow River Basin, China
Under global warming, the acceleration of the water cycle has increased the risk of drought in the Yellow River Basin. Revealing the drought driving mechanisms in the basin and understanding the risk situation of drought have become particularly important. This paper uses wavelet analysis and transfer entropy to analyze the drought driving mechanisms. In addition, an Improved Particle Swarm Optimization (IPSO) coupled with Long Short-Term Memory (LSTM) is used for drought risk prediction. The results are as follows: (1) Hydrological drought lags behind meteorological drought by 2–3 months, and they show two main periods on different time scales, which are 5–6 months and 8–14 months, respectively. (2) Rainfall, runoff, temperature, humidity, and vapor pressure are the main drought driving factors, with rainfall and humidity having the most significant impact. (3) The IPSO-LSTM model has improved the process of selecting model parameters based on empirical experiences in the LSTM model, improving the prediction accuracy by an average of 3.1%. This paper provides a scientific basis for water resource management and drought risk assessment in the basin, to better cope with future climate challenges.
期刊介绍:
The aim of Geomatics, Natural Hazards and Risk is to address new concepts, approaches and case studies using geospatial and remote sensing techniques to study monitoring, mapping, risk mitigation, risk vulnerability and early warning of natural hazards.
Geomatics, Natural Hazards and Risk covers the following topics:
- Remote sensing techniques
- Natural hazards associated with land, ocean, atmosphere, land-ocean-atmosphere coupling and climate change
- Emerging problems related to multi-hazard risk assessment, multi-vulnerability risk assessment, risk quantification and the economic aspects of hazards.
- Results of findings on major natural hazards