Yunke Zhang, Tong Li, Yuan Yuan, Fengli Xu, Fan Yang, Funing Sun, Yong Li
{"title":"需求驱动的城市设施访问预测","authors":"Yunke Zhang, Tong Li, Yuan Yuan, Fengli Xu, Fan Yang, Funing Sun, Yong Li","doi":"10.1145/3625233","DOIUrl":null,"url":null,"abstract":"Predicting citizens’ visiting behaviors to urban facilities is instrumental for city governors and planners to detect inequalities in urban opportunities and optimize the distribution of facilities and resources. Previous works predict facility visits simply using observed visit behavior, yet citizens’ intrinsic demands for facilities are not characterized explicitly, causing potential incorrect learned relations in the prediction results. In this paper, to make up for this deficiency, we present a demand-driven urban facility visit prediction method that decomposes citizens’ visits to facilities into their unobservable demands and their capability to fulfill them. Demands are expressed as the function of regional demographic attributes by a neural network, and the fulfillment capability is determined by the urban region’s spatial accessibility to facilities. Extensive evaluations of datasets of three large cities confirm the efficiency and rationality of our model. Our method outperforms the best state-of-the-art model by 8.28% on average in facility visit prediction tasks. Further analyses demonstrate the reasonableness of recovered facility demands and their relationship with citizen demographics. For instance, senior citizens tend to have higher medical demands but lower shopping demands. Meanwhile, estimated capabilities and accessibilities provide deeper insights into the decaying accessibility with respect to spatial distance and facilities’ diverse functions in the urban environment. Our findings shed light on demand-driven urban data mining and demand-based urban facility planning.","PeriodicalId":48967,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology","volume":" 26","pages":"0"},"PeriodicalIF":7.2000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Demand-Driven Urban Facility Visit Prediction\",\"authors\":\"Yunke Zhang, Tong Li, Yuan Yuan, Fengli Xu, Fan Yang, Funing Sun, Yong Li\",\"doi\":\"10.1145/3625233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting citizens’ visiting behaviors to urban facilities is instrumental for city governors and planners to detect inequalities in urban opportunities and optimize the distribution of facilities and resources. Previous works predict facility visits simply using observed visit behavior, yet citizens’ intrinsic demands for facilities are not characterized explicitly, causing potential incorrect learned relations in the prediction results. In this paper, to make up for this deficiency, we present a demand-driven urban facility visit prediction method that decomposes citizens’ visits to facilities into their unobservable demands and their capability to fulfill them. Demands are expressed as the function of regional demographic attributes by a neural network, and the fulfillment capability is determined by the urban region’s spatial accessibility to facilities. Extensive evaluations of datasets of three large cities confirm the efficiency and rationality of our model. Our method outperforms the best state-of-the-art model by 8.28% on average in facility visit prediction tasks. Further analyses demonstrate the reasonableness of recovered facility demands and their relationship with citizen demographics. For instance, senior citizens tend to have higher medical demands but lower shopping demands. Meanwhile, estimated capabilities and accessibilities provide deeper insights into the decaying accessibility with respect to spatial distance and facilities’ diverse functions in the urban environment. Our findings shed light on demand-driven urban data mining and demand-based urban facility planning.\",\"PeriodicalId\":48967,\"journal\":{\"name\":\"ACM Transactions on Intelligent Systems and Technology\",\"volume\":\" 26\",\"pages\":\"0\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Intelligent Systems and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3625233\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Intelligent Systems and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3625233","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Predicting citizens’ visiting behaviors to urban facilities is instrumental for city governors and planners to detect inequalities in urban opportunities and optimize the distribution of facilities and resources. Previous works predict facility visits simply using observed visit behavior, yet citizens’ intrinsic demands for facilities are not characterized explicitly, causing potential incorrect learned relations in the prediction results. In this paper, to make up for this deficiency, we present a demand-driven urban facility visit prediction method that decomposes citizens’ visits to facilities into their unobservable demands and their capability to fulfill them. Demands are expressed as the function of regional demographic attributes by a neural network, and the fulfillment capability is determined by the urban region’s spatial accessibility to facilities. Extensive evaluations of datasets of three large cities confirm the efficiency and rationality of our model. Our method outperforms the best state-of-the-art model by 8.28% on average in facility visit prediction tasks. Further analyses demonstrate the reasonableness of recovered facility demands and their relationship with citizen demographics. For instance, senior citizens tend to have higher medical demands but lower shopping demands. Meanwhile, estimated capabilities and accessibilities provide deeper insights into the decaying accessibility with respect to spatial distance and facilities’ diverse functions in the urban environment. Our findings shed light on demand-driven urban data mining and demand-based urban facility planning.
期刊介绍:
ACM Transactions on Intelligent Systems and Technology is a scholarly journal that publishes the highest quality papers on intelligent systems, applicable algorithms and technology with a multi-disciplinary perspective. An intelligent system is one that uses artificial intelligence (AI) techniques to offer important services (e.g., as a component of a larger system) to allow integrated systems to perceive, reason, learn, and act intelligently in the real world.
ACM TIST is published quarterly (six issues a year). Each issue has 8-11 regular papers, with around 20 published journal pages or 10,000 words per paper. Additional references, proofs, graphs or detailed experiment results can be submitted as a separate appendix, while excessively lengthy papers will be rejected automatically. Authors can include online-only appendices for additional content of their published papers and are encouraged to share their code and/or data with other readers.