{"title":"基于长短期记忆的深度学习模型的情感分析自动化模型","authors":"Shashank Mishra, Mukul Aggarwal, Shivam Yadav, Yashika Sharma","doi":"10.5815/ijem.2023.05.02","DOIUrl":null,"url":null,"abstract":"A post, review, or news article's emotional tone can be automatically ascertained using sentiment analysis, a natural language processing approach. Sorting the text into positive, negative, or neutral categories is the aim of sentiment analysis. Many methods, including rule-based systems and machine learning algorithms, can be used to analyse sentiment, or deep learning models. These techniques typically involve analyzing various features of the text, such as word choice, sentence structure, and context, to identify the overall sentiment. Here long short-term memory-based deep learning is applied in this research for the model development purpose. Deeply interconnected neural networks are used in this method. Sentiment analysis can be used in many different applications, such as market research, brand reputation management, customer feedback analysis, and social media monitoring. It shows the use of sentiment analysis in a variety of fields and increases the need of technology to perform it on the existing machines.","PeriodicalId":14238,"journal":{"name":"International Journal of Precision Engineering and Manufacturing-Green Technology","volume":"46 1","pages":"0"},"PeriodicalIF":5.3000,"publicationDate":"2023-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Automated Model for Sentimental Analysis Using Long Short-Term Memory-based Deep Learning Model\",\"authors\":\"Shashank Mishra, Mukul Aggarwal, Shivam Yadav, Yashika Sharma\",\"doi\":\"10.5815/ijem.2023.05.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A post, review, or news article's emotional tone can be automatically ascertained using sentiment analysis, a natural language processing approach. Sorting the text into positive, negative, or neutral categories is the aim of sentiment analysis. Many methods, including rule-based systems and machine learning algorithms, can be used to analyse sentiment, or deep learning models. These techniques typically involve analyzing various features of the text, such as word choice, sentence structure, and context, to identify the overall sentiment. Here long short-term memory-based deep learning is applied in this research for the model development purpose. Deeply interconnected neural networks are used in this method. Sentiment analysis can be used in many different applications, such as market research, brand reputation management, customer feedback analysis, and social media monitoring. It shows the use of sentiment analysis in a variety of fields and increases the need of technology to perform it on the existing machines.\",\"PeriodicalId\":14238,\"journal\":{\"name\":\"International Journal of Precision Engineering and Manufacturing-Green Technology\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Precision Engineering and Manufacturing-Green Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5815/ijem.2023.05.02\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Precision Engineering and Manufacturing-Green Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5815/ijem.2023.05.02","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
An Automated Model for Sentimental Analysis Using Long Short-Term Memory-based Deep Learning Model
A post, review, or news article's emotional tone can be automatically ascertained using sentiment analysis, a natural language processing approach. Sorting the text into positive, negative, or neutral categories is the aim of sentiment analysis. Many methods, including rule-based systems and machine learning algorithms, can be used to analyse sentiment, or deep learning models. These techniques typically involve analyzing various features of the text, such as word choice, sentence structure, and context, to identify the overall sentiment. Here long short-term memory-based deep learning is applied in this research for the model development purpose. Deeply interconnected neural networks are used in this method. Sentiment analysis can be used in many different applications, such as market research, brand reputation management, customer feedback analysis, and social media monitoring. It shows the use of sentiment analysis in a variety of fields and increases the need of technology to perform it on the existing machines.
期刊介绍:
Green Technology aspects of precision engineering and manufacturing are becoming ever more important in current and future technologies. New knowledge in this field will aid in the advancement of various technologies that are needed to gain industrial competitiveness. To this end IJPEM - Green Technology aims to disseminate relevant developments and applied research works of high quality to the international community through efficient and rapid publication. IJPEM - Green Technology covers novel research contributions in all aspects of "Green" precision engineering and manufacturing.